mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-25 00:50:22 +00:00
a6a439243f
This step would ideally not have been necessary (increases amount of refactoring and templates necessary, which in turn increases build times), but it gives us a couple of nice properties: - SpinlockProtected inside Singleton (a very common combination) can now obtain any lock rank just via the template parameter. It was not previously possible to do this with SingletonInstanceCreator magic. - SpinlockProtected's lock rank is now mandatory; this is the majority of cases and allows us to see where we're still missing proper ranks. - The type already informs us what lock rank a lock has, which aids code readability and (possibly, if gdb cooperates) lock mismatch debugging. - The rank of a lock can no longer be dynamic, which is not something we wanted in the first place (or made use of). Locks randomly changing their rank sounds like a disaster waiting to happen. - In some places, we might be able to statically check that locks are taken in the right order (with the right lock rank checking implementation) as rank information is fully statically known. This refactoring even more exposes the fact that Mutex has no lock rank capabilites, which is not fixed here.
203 lines
5.3 KiB
C++
203 lines
5.3 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* Copyright (c) 2020, Peter Elliott <pelliott@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Assertions.h>
|
|
#include <AK/ByteBuffer.h>
|
|
#include <AK/Types.h>
|
|
#include <Kernel/Arch/Processor.h>
|
|
#include <Kernel/Locking/Mutex.h>
|
|
#include <Kernel/StdLib.h>
|
|
#include <LibCrypto/Cipher/AES.h>
|
|
#include <LibCrypto/Cipher/Cipher.h>
|
|
#include <LibCrypto/Hash/SHA2.h>
|
|
|
|
namespace Kernel {
|
|
|
|
template<typename CipherT, typename HashT, int KeySize>
|
|
class FortunaPRNG {
|
|
public:
|
|
constexpr static size_t pool_count = 32;
|
|
constexpr static size_t reseed_threshold = 16;
|
|
|
|
using CipherType = CipherT;
|
|
using BlockType = typename CipherT::BlockType;
|
|
using HashType = HashT;
|
|
using DigestType = typename HashT::DigestType;
|
|
|
|
// FIXME: Do something other than VERIFY()'ing in case of OOM.
|
|
FortunaPRNG()
|
|
: m_counter(ByteBuffer::create_zeroed(BlockType::block_size()).release_value_but_fixme_should_propagate_errors())
|
|
{
|
|
}
|
|
|
|
bool get_random_bytes(Bytes buffer)
|
|
{
|
|
SpinlockLocker lock(m_lock);
|
|
if (!is_ready())
|
|
return false;
|
|
if (m_p0_len >= reseed_threshold) {
|
|
this->reseed();
|
|
}
|
|
|
|
VERIFY(is_seeded());
|
|
|
|
// FIXME: More than 2^20 bytes cannot be generated without refreshing the key.
|
|
VERIFY(buffer.size() < (1 << 20));
|
|
|
|
typename CipherType::CTRMode cipher(m_key, KeySize, Crypto::Cipher::Intent::Encryption);
|
|
|
|
auto counter_span = m_counter.bytes();
|
|
cipher.key_stream(buffer, counter_span, &counter_span);
|
|
|
|
// Extract a new key from the prng stream.
|
|
Bytes key_span = m_key.bytes();
|
|
cipher.key_stream(key_span, counter_span, &counter_span);
|
|
return true;
|
|
}
|
|
|
|
template<typename T>
|
|
void add_random_event(T const& event_data, size_t pool)
|
|
{
|
|
pool %= pool_count;
|
|
if (pool == 0) {
|
|
m_p0_len++;
|
|
}
|
|
m_pools[pool].update(reinterpret_cast<u8 const*>(&event_data), sizeof(T));
|
|
}
|
|
|
|
[[nodiscard]] bool is_seeded() const
|
|
{
|
|
return m_reseed_number > 0;
|
|
}
|
|
|
|
[[nodiscard]] bool is_ready() const
|
|
{
|
|
VERIFY(m_lock.is_locked());
|
|
return is_seeded() || m_p0_len >= reseed_threshold;
|
|
}
|
|
|
|
Spinlock<LockRank::None>& get_lock() { return m_lock; }
|
|
|
|
private:
|
|
void reseed()
|
|
{
|
|
HashType new_key;
|
|
new_key.update(m_key);
|
|
for (size_t i = 0; i < pool_count; ++i) {
|
|
if (m_reseed_number % (1u << i) == 0) {
|
|
DigestType digest = m_pools[i].digest();
|
|
new_key.update(digest.immutable_data(), digest.data_length());
|
|
}
|
|
}
|
|
DigestType digest = new_key.digest();
|
|
if (m_key.size() == digest.data_length()) {
|
|
// Avoid reallocating, just overwrite the key.
|
|
m_key.overwrite(0, digest.immutable_data(), digest.data_length());
|
|
} else {
|
|
auto buffer_result = ByteBuffer::copy(digest.immutable_data(), digest.data_length());
|
|
// If there's no memory left to copy this into, bail out.
|
|
if (buffer_result.is_error())
|
|
return;
|
|
|
|
m_key = buffer_result.release_value();
|
|
}
|
|
|
|
m_reseed_number++;
|
|
m_p0_len = 0;
|
|
}
|
|
|
|
ByteBuffer m_counter;
|
|
size_t m_reseed_number { 0 };
|
|
size_t m_p0_len { 0 };
|
|
ByteBuffer m_key;
|
|
HashType m_pools[pool_count];
|
|
Spinlock<LockRank::None> m_lock {};
|
|
};
|
|
|
|
class KernelRng : public FortunaPRNG<Crypto::Cipher::AESCipher, Crypto::Hash::SHA256, 256> {
|
|
|
|
public:
|
|
KernelRng();
|
|
static KernelRng& the();
|
|
|
|
void wait_for_entropy();
|
|
|
|
void wake_if_ready();
|
|
|
|
private:
|
|
WaitQueue m_seed_queue;
|
|
};
|
|
|
|
class EntropySource {
|
|
template<typename T>
|
|
struct Event {
|
|
u64 timestamp;
|
|
size_t source;
|
|
T event_data;
|
|
};
|
|
|
|
public:
|
|
enum class Static : size_t {
|
|
Interrupts,
|
|
MaxHardcodedSourceIndex,
|
|
};
|
|
|
|
EntropySource()
|
|
: m_source(next_source++)
|
|
{
|
|
}
|
|
|
|
EntropySource(Static hardcoded_source)
|
|
: m_source(static_cast<size_t>(hardcoded_source))
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
void add_random_event(T const& event_data)
|
|
{
|
|
auto& kernel_rng = KernelRng::the();
|
|
SpinlockLocker lock(kernel_rng.get_lock());
|
|
// We don't lock this because on the off chance a pool is corrupted, entropy isn't lost.
|
|
Event<T> event = { Processor::read_cpu_counter(), m_source, event_data };
|
|
kernel_rng.add_random_event(event, m_pool);
|
|
m_pool++;
|
|
kernel_rng.wake_if_ready();
|
|
}
|
|
|
|
private:
|
|
static size_t next_source;
|
|
size_t m_pool { 0 };
|
|
size_t m_source;
|
|
};
|
|
|
|
// NOTE: These API's are primarily about expressing intent/needs in the calling code.
|
|
// The only difference is that get_fast_random is guaranteed not to block.
|
|
|
|
void get_fast_random_bytes(Bytes);
|
|
bool get_good_random_bytes(Bytes bytes, bool allow_wait = true, bool fallback_to_fast = true);
|
|
|
|
template<typename T>
|
|
inline T get_fast_random()
|
|
{
|
|
T value;
|
|
Bytes bytes { reinterpret_cast<u8*>(&value), sizeof(T) };
|
|
get_fast_random_bytes(bytes);
|
|
return value;
|
|
}
|
|
|
|
template<typename T>
|
|
inline T get_good_random()
|
|
{
|
|
T value;
|
|
Bytes bytes { reinterpret_cast<u8*>(&value), sizeof(T) };
|
|
get_good_random_bytes(bytes);
|
|
return value;
|
|
}
|
|
|
|
}
|