mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-27 01:50:24 +00:00
b9738fa8ac
Also break MemoryManager.{cpp,h} into one file per class.
529 lines
16 KiB
C++
529 lines
16 KiB
C++
#include <Kernel/Thread.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/system.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
#include <LibC/signal_numbers.h>
|
|
|
|
InlineLinkedList<Thread>* g_threads;
|
|
static const dword default_kernel_stack_size = 16384;
|
|
static const dword default_userspace_stack_size = 65536;
|
|
|
|
Thread::Thread(Process& process)
|
|
: m_process(process)
|
|
, m_tid(process.m_next_tid++)
|
|
{
|
|
dbgprintf("Thread: New thread TID=%u in %s(%u)\n", m_tid, process.name().characters(), process.pid());
|
|
set_default_signal_dispositions();
|
|
m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
|
|
memset(&m_tss, 0, sizeof(m_tss));
|
|
|
|
// Only IF is set when a process boots.
|
|
m_tss.eflags = 0x0202;
|
|
word cs, ds, ss;
|
|
|
|
if (m_process.is_ring0()) {
|
|
cs = 0x08;
|
|
ds = 0x10;
|
|
ss = 0x10;
|
|
} else {
|
|
cs = 0x1b;
|
|
ds = 0x23;
|
|
ss = 0x23;
|
|
}
|
|
|
|
m_tss.ds = ds;
|
|
m_tss.es = ds;
|
|
m_tss.fs = ds;
|
|
m_tss.gs = ds;
|
|
m_tss.ss = ss;
|
|
m_tss.cs = cs;
|
|
|
|
m_tss.cr3 = m_process.page_directory().cr3();
|
|
|
|
if (m_process.is_ring0()) {
|
|
// FIXME: This memory is leaked.
|
|
// But uh, there's also no kernel process termination, so I guess it's not technically leaked...
|
|
dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
|
|
m_stack_top0 = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
|
|
m_tss.esp = m_stack_top0;
|
|
} else {
|
|
// Ring3 processes need a separate stack for Ring0.
|
|
m_kernel_stack = kmalloc(default_kernel_stack_size);
|
|
m_stack_top0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
|
|
m_tss.ss0 = 0x10;
|
|
m_tss.esp0 = m_stack_top0;
|
|
}
|
|
|
|
// HACK: Ring2 SS in the TSS is the current PID.
|
|
m_tss.ss2 = m_process.pid();
|
|
m_far_ptr.offset = 0x98765432;
|
|
|
|
if (m_process.pid() != 0) {
|
|
InterruptDisabler disabler;
|
|
g_threads->prepend(this);
|
|
}
|
|
}
|
|
|
|
Thread::~Thread()
|
|
{
|
|
dbgprintf("~Thread{%p}\n", this);
|
|
kfree_aligned(m_fpu_state);
|
|
{
|
|
InterruptDisabler disabler;
|
|
g_threads->remove(this);
|
|
}
|
|
|
|
if (g_last_fpu_thread == this)
|
|
g_last_fpu_thread = nullptr;
|
|
|
|
if (selector())
|
|
gdt_free_entry(selector());
|
|
|
|
if (m_kernel_stack) {
|
|
kfree(m_kernel_stack);
|
|
m_kernel_stack = nullptr;
|
|
}
|
|
|
|
if (m_kernel_stack_for_signal_handler) {
|
|
kfree(m_kernel_stack_for_signal_handler);
|
|
m_kernel_stack_for_signal_handler = nullptr;
|
|
}
|
|
}
|
|
|
|
void Thread::unblock()
|
|
{
|
|
if (current == this) {
|
|
m_state = Thread::Running;
|
|
return;
|
|
}
|
|
ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
|
|
m_state = Thread::Runnable;
|
|
}
|
|
|
|
void Thread::snooze_until(Alarm& alarm)
|
|
{
|
|
m_snoozing_alarm = &alarm;
|
|
block(Thread::BlockedSnoozing);
|
|
Scheduler::yield();
|
|
}
|
|
|
|
void Thread::block(Thread::State new_state)
|
|
{
|
|
bool did_unlock = process().big_lock().unlock_if_locked();
|
|
if (state() != Thread::Running) {
|
|
kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
|
|
}
|
|
ASSERT(state() == Thread::Running);
|
|
m_was_interrupted_while_blocked = false;
|
|
set_state(new_state);
|
|
Scheduler::yield();
|
|
if (did_unlock)
|
|
process().big_lock().lock();
|
|
}
|
|
|
|
void Thread::sleep(dword ticks)
|
|
{
|
|
ASSERT(state() == Thread::Running);
|
|
current->set_wakeup_time(system.uptime + ticks);
|
|
current->block(Thread::BlockedSleep);
|
|
}
|
|
|
|
const char* to_string(Thread::State state)
|
|
{
|
|
switch (state) {
|
|
case Thread::Invalid: return "Invalid";
|
|
case Thread::Runnable: return "Runnable";
|
|
case Thread::Running: return "Running";
|
|
case Thread::Dying: return "Dying";
|
|
case Thread::Dead: return "Dead";
|
|
case Thread::Stopped: return "Stopped";
|
|
case Thread::Skip1SchedulerPass: return "Skip1";
|
|
case Thread::Skip0SchedulerPasses: return "Skip0";
|
|
case Thread::BlockedSleep: return "Sleep";
|
|
case Thread::BlockedWait: return "Wait";
|
|
case Thread::BlockedRead: return "Read";
|
|
case Thread::BlockedWrite: return "Write";
|
|
case Thread::BlockedSignal: return "Signal";
|
|
case Thread::BlockedSelect: return "Select";
|
|
case Thread::BlockedLurking: return "Lurking";
|
|
case Thread::BlockedConnect: return "Connect";
|
|
case Thread::BlockedReceive: return "Receive";
|
|
case Thread::BlockedSnoozing: return "Snoozing";
|
|
}
|
|
kprintf("to_string(Thread::State): Invalid state: %u\n", state);
|
|
ASSERT_NOT_REACHED();
|
|
return nullptr;
|
|
}
|
|
|
|
void Thread::finalize()
|
|
{
|
|
dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
|
|
m_blocked_socket = nullptr;
|
|
set_state(Thread::State::Dead);
|
|
|
|
if (this == &m_process.main_thread())
|
|
m_process.finalize();
|
|
}
|
|
|
|
void Thread::finalize_dying_threads()
|
|
{
|
|
Vector<Thread*> dying_threads;
|
|
{
|
|
InterruptDisabler disabler;
|
|
for_each_in_state(Thread::State::Dying, [&] (Thread& thread) {
|
|
dying_threads.append(&thread);
|
|
});
|
|
}
|
|
for (auto* thread : dying_threads)
|
|
thread->finalize();
|
|
}
|
|
|
|
bool Thread::tick()
|
|
{
|
|
++m_ticks;
|
|
if (tss().cs & 3)
|
|
++m_process.m_ticks_in_user;
|
|
else
|
|
++m_process.m_ticks_in_kernel;
|
|
return --m_ticks_left;
|
|
}
|
|
|
|
void Thread::send_signal(byte signal, Process* sender)
|
|
{
|
|
ASSERT(signal < 32);
|
|
|
|
if (sender)
|
|
dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
|
|
else
|
|
dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
|
|
|
|
InterruptDisabler disabler;
|
|
m_pending_signals |= 1 << signal;
|
|
}
|
|
|
|
bool Thread::has_unmasked_pending_signals() const
|
|
{
|
|
return m_pending_signals & ~m_signal_mask;
|
|
}
|
|
|
|
ShouldUnblockThread Thread::dispatch_one_pending_signal()
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
dword signal_candidates = m_pending_signals & ~m_signal_mask;
|
|
ASSERT(signal_candidates);
|
|
|
|
byte signal = 0;
|
|
for (; signal < 32; ++signal) {
|
|
if (signal_candidates & (1 << signal)) {
|
|
break;
|
|
}
|
|
}
|
|
return dispatch_signal(signal);
|
|
}
|
|
|
|
enum class DefaultSignalAction {
|
|
Terminate,
|
|
Ignore,
|
|
DumpCore,
|
|
Stop,
|
|
Continue,
|
|
};
|
|
|
|
DefaultSignalAction default_signal_action(byte signal)
|
|
{
|
|
ASSERT(signal && signal < NSIG);
|
|
|
|
switch (signal) {
|
|
case SIGHUP:
|
|
case SIGINT:
|
|
case SIGKILL:
|
|
case SIGPIPE:
|
|
case SIGALRM:
|
|
case SIGUSR1:
|
|
case SIGUSR2:
|
|
case SIGVTALRM:
|
|
case SIGSTKFLT:
|
|
case SIGIO:
|
|
case SIGPROF:
|
|
case SIGTERM:
|
|
case SIGPWR:
|
|
return DefaultSignalAction::Terminate;
|
|
case SIGCHLD:
|
|
case SIGURG:
|
|
case SIGWINCH:
|
|
return DefaultSignalAction::Ignore;
|
|
case SIGQUIT:
|
|
case SIGILL:
|
|
case SIGTRAP:
|
|
case SIGABRT:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGSEGV:
|
|
case SIGXCPU:
|
|
case SIGXFSZ:
|
|
case SIGSYS:
|
|
return DefaultSignalAction::DumpCore;
|
|
case SIGCONT:
|
|
return DefaultSignalAction::Continue;
|
|
case SIGSTOP:
|
|
case SIGTSTP:
|
|
case SIGTTIN:
|
|
case SIGTTOU:
|
|
return DefaultSignalAction::Stop;
|
|
}
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
ShouldUnblockThread Thread::dispatch_signal(byte signal)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(signal < 32);
|
|
|
|
#ifdef SIGNAL_DEBUG
|
|
kprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
|
|
#endif
|
|
|
|
auto& action = m_signal_action_data[signal];
|
|
// FIXME: Implement SA_SIGINFO signal handlers.
|
|
ASSERT(!(action.flags & SA_SIGINFO));
|
|
|
|
// Mark this signal as handled.
|
|
m_pending_signals &= ~(1 << signal);
|
|
|
|
if (signal == SIGSTOP) {
|
|
set_state(Stopped);
|
|
return ShouldUnblockThread::No;
|
|
}
|
|
|
|
if (signal == SIGCONT && state() == Stopped)
|
|
set_state(Runnable);
|
|
|
|
auto handler_laddr = action.handler_or_sigaction;
|
|
if (handler_laddr.is_null()) {
|
|
switch (default_signal_action(signal)) {
|
|
case DefaultSignalAction::Stop:
|
|
set_state(Stopped);
|
|
return ShouldUnblockThread::No;
|
|
case DefaultSignalAction::DumpCore:
|
|
case DefaultSignalAction::Terminate:
|
|
m_process.terminate_due_to_signal(signal);
|
|
return ShouldUnblockThread::No;
|
|
case DefaultSignalAction::Ignore:
|
|
return ShouldUnblockThread::No;
|
|
case DefaultSignalAction::Continue:
|
|
return ShouldUnblockThread::Yes;
|
|
}
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
if (handler_laddr.as_ptr() == SIG_IGN) {
|
|
#ifdef SIGNAL_DEBUG
|
|
kprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
|
|
#endif
|
|
return ShouldUnblockThread::Yes;
|
|
}
|
|
|
|
dword old_signal_mask = m_signal_mask;
|
|
dword new_signal_mask = action.mask;
|
|
if (action.flags & SA_NODEFER)
|
|
new_signal_mask &= ~(1 << signal);
|
|
else
|
|
new_signal_mask |= 1 << signal;
|
|
|
|
m_signal_mask |= new_signal_mask;
|
|
|
|
Scheduler::prepare_to_modify_tss(*this);
|
|
|
|
word ret_cs = m_tss.cs;
|
|
dword ret_eip = m_tss.eip;
|
|
dword ret_eflags = m_tss.eflags;
|
|
bool interrupting_in_kernel = (ret_cs & 3) == 0;
|
|
|
|
ProcessPagingScope paging_scope(m_process);
|
|
m_process.create_signal_trampolines_if_needed();
|
|
|
|
if (interrupting_in_kernel) {
|
|
#ifdef SIGNAL_DEBUG
|
|
kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
|
|
#endif
|
|
ASSERT(is_blocked());
|
|
m_tss_to_resume_kernel = m_tss;
|
|
#ifdef SIGNAL_DEBUG
|
|
kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip, m_tss_to_resume_kernel.ss, m_tss_to_resume_kernel.esp, m_tss_to_resume_kernel.eflags, m_tss_to_resume_kernel.cr3);
|
|
#endif
|
|
|
|
if (!m_signal_stack_user_region) {
|
|
m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Signal stack (user)");
|
|
ASSERT(m_signal_stack_user_region);
|
|
}
|
|
if (!m_kernel_stack_for_signal_handler) {
|
|
m_kernel_stack_for_signal_handler = kmalloc(default_kernel_stack_size);
|
|
ASSERT(m_kernel_stack_for_signal_handler);
|
|
}
|
|
m_tss.ss = 0x23;
|
|
m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get();
|
|
m_tss.ss0 = 0x10;
|
|
m_tss.esp0 = (dword)m_kernel_stack_for_signal_handler + default_kernel_stack_size;
|
|
|
|
push_value_on_stack(0);
|
|
} else {
|
|
push_value_on_stack(ret_eip);
|
|
push_value_on_stack(ret_eflags);
|
|
|
|
// PUSHA
|
|
dword old_esp = m_tss.esp;
|
|
push_value_on_stack(m_tss.eax);
|
|
push_value_on_stack(m_tss.ecx);
|
|
push_value_on_stack(m_tss.edx);
|
|
push_value_on_stack(m_tss.ebx);
|
|
push_value_on_stack(old_esp);
|
|
push_value_on_stack(m_tss.ebp);
|
|
push_value_on_stack(m_tss.esi);
|
|
push_value_on_stack(m_tss.edi);
|
|
|
|
// Align the stack.
|
|
m_tss.esp -= 12;
|
|
}
|
|
|
|
// PUSH old_signal_mask
|
|
push_value_on_stack(old_signal_mask);
|
|
|
|
m_tss.cs = 0x1b;
|
|
m_tss.ds = 0x23;
|
|
m_tss.es = 0x23;
|
|
m_tss.fs = 0x23;
|
|
m_tss.gs = 0x23;
|
|
m_tss.eip = handler_laddr.get();
|
|
|
|
// FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
|
|
push_value_on_stack(signal);
|
|
|
|
if (interrupting_in_kernel)
|
|
push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
|
|
else
|
|
push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
|
|
|
|
ASSERT((m_tss.esp % 16) == 0);
|
|
|
|
// FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
|
|
set_state(Skip1SchedulerPass);
|
|
|
|
#ifdef SIGNAL_DEBUG
|
|
kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
|
|
#endif
|
|
return ShouldUnblockThread::Yes;
|
|
}
|
|
|
|
void Thread::set_default_signal_dispositions()
|
|
{
|
|
// FIXME: Set up all the right default actions. See signal(7).
|
|
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
|
|
m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
|
|
m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
|
|
}
|
|
|
|
void Thread::push_value_on_stack(dword value)
|
|
{
|
|
m_tss.esp -= 4;
|
|
dword* stack_ptr = (dword*)m_tss.esp;
|
|
*stack_ptr = value;
|
|
}
|
|
|
|
void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
|
|
{
|
|
auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
|
|
ASSERT(region);
|
|
m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
|
|
m_tss.esp = m_stack_top3;
|
|
|
|
char* stack_base = (char*)region->laddr().get();
|
|
int argc = arguments.size();
|
|
char** argv = (char**)stack_base;
|
|
char** env = argv + arguments.size() + 1;
|
|
char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
|
|
|
|
size_t total_blob_size = 0;
|
|
for (auto& a : arguments)
|
|
total_blob_size += a.length() + 1;
|
|
for (auto& e : environment)
|
|
total_blob_size += e.length() + 1;
|
|
|
|
size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
|
|
|
|
// FIXME: It would be better if this didn't make us panic.
|
|
ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
|
|
|
|
for (int i = 0; i < arguments.size(); ++i) {
|
|
argv[i] = bufptr;
|
|
memcpy(bufptr, arguments[i].characters(), arguments[i].length());
|
|
bufptr += arguments[i].length();
|
|
*(bufptr++) = '\0';
|
|
}
|
|
argv[arguments.size()] = nullptr;
|
|
|
|
for (int i = 0; i < environment.size(); ++i) {
|
|
env[i] = bufptr;
|
|
memcpy(bufptr, environment[i].characters(), environment[i].length());
|
|
bufptr += environment[i].length();
|
|
*(bufptr++) = '\0';
|
|
}
|
|
env[environment.size()] = nullptr;
|
|
|
|
// NOTE: The stack needs to be 16-byte aligned.
|
|
push_value_on_stack((dword)env);
|
|
push_value_on_stack((dword)argv);
|
|
push_value_on_stack((dword)argc);
|
|
push_value_on_stack(0);
|
|
}
|
|
|
|
void Thread::make_userspace_stack_for_secondary_thread(void *argument)
|
|
{
|
|
auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("Thread %u Stack", tid()));
|
|
ASSERT(region);
|
|
m_stack_top3 = region->laddr().offset(default_userspace_stack_size).get();
|
|
m_tss.esp = m_stack_top3;
|
|
|
|
// NOTE: The stack needs to be 16-byte aligned.
|
|
push_value_on_stack((dword)argument);
|
|
push_value_on_stack(0);
|
|
}
|
|
|
|
Thread* Thread::clone(Process& process)
|
|
{
|
|
auto* clone = new Thread(process);
|
|
memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
|
|
clone->m_signal_mask = m_signal_mask;
|
|
clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
|
|
memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
|
|
clone->m_has_used_fpu = m_has_used_fpu;
|
|
return clone;
|
|
}
|
|
|
|
KResult Thread::wait_for_connect(Socket& socket)
|
|
{
|
|
if (socket.is_connected())
|
|
return KSuccess;
|
|
m_blocked_socket = socket;
|
|
block(Thread::State::BlockedConnect);
|
|
Scheduler::yield();
|
|
m_blocked_socket = nullptr;
|
|
if (!socket.is_connected())
|
|
return KResult(-ECONNREFUSED);
|
|
return KSuccess;
|
|
}
|
|
|
|
void Thread::initialize()
|
|
{
|
|
g_threads = new InlineLinkedList<Thread>;
|
|
Scheduler::initialize();
|
|
}
|
|
|
|
Vector<Thread*> Thread::all_threads()
|
|
{
|
|
Vector<Thread*> threads;
|
|
InterruptDisabler disabler;
|
|
for (auto* thread = g_threads->head(); thread; thread = thread->next())
|
|
threads.append(thread);
|
|
return threads;
|
|
}
|