mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-25 17:10:23 +00:00
d451f84f31
Progress towards #23562.
240 lines
12 KiB
C++
240 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2022, Ben Wiederhake <BenWiederhake.GitHub@gmx.de>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/StringView.h>
|
|
#include <AK/Time.h>
|
|
#include <LibCrypto/ASN1/ASN1.h>
|
|
#include <LibCrypto/ASN1/DER.h>
|
|
#include <LibTest/TestCase.h>
|
|
|
|
#define EXPECT_DATETIME(sv, y, mo, d, h, mi, s) \
|
|
EXPECT_EQ(Crypto::ASN1::parse_utc_time(sv).value(), UnixDateTime::from_unix_time_parts(y, mo, d, h, mi, s, 0))
|
|
|
|
TEST_CASE(test_utc_boring)
|
|
{
|
|
// YYMMDDhhmm[ss]Z
|
|
EXPECT_DATETIME("010101010101Z"sv, 2001, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("010203040506Z"sv, 2001, 2, 3, 4, 5, 6);
|
|
EXPECT_DATETIME("020406081012Z"sv, 2002, 4, 6, 8, 10, 12);
|
|
EXPECT_DATETIME("0204060810Z"sv, 2002, 4, 6, 8, 10, 0);
|
|
EXPECT_DATETIME("220911220000Z"sv, 2022, 9, 11, 22, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_utc_year_rollover)
|
|
{
|
|
// YYMMDDhhmm[ss]Z
|
|
EXPECT_DATETIME("000101010101Z"sv, 2000, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("010101010101Z"sv, 2001, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("020101010101Z"sv, 2002, 1, 1, 1, 1, 1);
|
|
// ...
|
|
EXPECT_DATETIME("480101010101Z"sv, 2048, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("490101010101Z"sv, 2049, 1, 1, 1, 1, 1);
|
|
// This Y2050-problem is hardcoded in the spec. Oh no.
|
|
EXPECT_DATETIME("500101010101Z"sv, 1950, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("510101010101Z"sv, 1951, 1, 1, 1, 1, 1);
|
|
// ...
|
|
EXPECT_DATETIME("970101010101Z"sv, 1997, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("980101010101Z"sv, 1998, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("990101010101Z"sv, 1999, 1, 1, 1, 1, 1);
|
|
}
|
|
|
|
TEST_CASE(test_utc_offset)
|
|
{
|
|
// YYMMDDhhmm[ss](+|-)hhmm
|
|
// We don't yet support storing the offset anywhere and instead just assume that the offset is just +0000.
|
|
EXPECT_DATETIME("010101010101+0000"sv, 2001, 1, 1, 1, 1, 1);
|
|
EXPECT_DATETIME("010203040506+0000"sv, 2001, 2, 3, 4, 5, 6);
|
|
EXPECT_DATETIME("020406081012+0000"sv, 2002, 4, 6, 8, 10, 12);
|
|
EXPECT_DATETIME("0204060810+0000"sv, 2002, 4, 6, 8, 10, 0);
|
|
EXPECT_DATETIME("220911220000+0000"sv, 2022, 9, 11, 22, 0, 0);
|
|
// Designed to fail once we support offsets:
|
|
EXPECT_DATETIME("220911220000+0600"sv, 2022, 9, 11, 22, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_utc_missing_z)
|
|
{
|
|
// YYMMDDhhmm[ss]
|
|
// We don't actually need to parse this correctly; rejecting these inputs is fine.
|
|
// This test just makes sure that we don't crash.
|
|
(void)Crypto::ASN1::parse_utc_time("010101010101"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("010203040506"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("020406081012"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("0204060810"sv);
|
|
(void)Crypto::ASN1::parse_utc_time("220911220000"sv);
|
|
}
|
|
|
|
#undef EXPECT_DATETIME
|
|
#define EXPECT_DATETIME(sv, y, mo, d, h, mi, s, ms) \
|
|
EXPECT_EQ(Crypto::ASN1::parse_generalized_time(sv).value(), UnixDateTime::from_unix_time_parts(y, mo, d, h, mi, s, ms))
|
|
|
|
TEST_CASE(test_generalized_boring)
|
|
{
|
|
// YYYYMMDDhh[mm[ss[.fff]]]
|
|
EXPECT_DATETIME("20010101010101Z"sv, 2001, 1, 1, 1, 1, 1, 0);
|
|
EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20020406081012Z"sv, 2002, 4, 6, 8, 10, 12, 0);
|
|
EXPECT_DATETIME("200204060810Z"sv, 2002, 4, 6, 8, 10, 0, 0);
|
|
EXPECT_DATETIME("2002040608Z"sv, 2002, 4, 6, 8, 0, 0, 0);
|
|
EXPECT_DATETIME("20020406081012.567Z"sv, 2002, 4, 6, 8, 10, 12, 567);
|
|
EXPECT_DATETIME("20220911220000Z"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_offset)
|
|
{
|
|
// YYYYMMDDhh[mm[ss[.fff]]](+|-)hhmm
|
|
// We don't yet support storing the offset anywhere and instead just assume that the offset is just +0000.
|
|
EXPECT_DATETIME("20010101010101+0000"sv, 2001, 1, 1, 1, 1, 1, 0);
|
|
EXPECT_DATETIME("20010203040506+0000"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20020406081012+0000"sv, 2002, 4, 6, 8, 10, 12, 0);
|
|
EXPECT_DATETIME("200204060810+0000"sv, 2002, 4, 6, 8, 10, 0, 0);
|
|
EXPECT_DATETIME("2002040608+0000"sv, 2002, 4, 6, 8, 0, 0, 0);
|
|
EXPECT_DATETIME("20020406081012.567+0000"sv, 2002, 4, 6, 8, 10, 12, 567);
|
|
EXPECT_DATETIME("20220911220000+0000"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
// Designed to fail once we support offsets:
|
|
EXPECT_DATETIME("20220911220000+0600"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_missing_z)
|
|
{
|
|
// YYYYMMDDhh[mm[ss[.fff]]]
|
|
EXPECT_DATETIME("20010101010101"sv, 2001, 1, 1, 1, 1, 1, 0);
|
|
EXPECT_DATETIME("20010203040506"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20020406081012"sv, 2002, 4, 6, 8, 10, 12, 0);
|
|
EXPECT_DATETIME("200204060810"sv, 2002, 4, 6, 8, 10, 0, 0);
|
|
EXPECT_DATETIME("2002040608"sv, 2002, 4, 6, 8, 0, 0, 0);
|
|
EXPECT_DATETIME("20020406081012.567"sv, 2002, 4, 6, 8, 10, 12, 567);
|
|
EXPECT_DATETIME("20220911220000"sv, 2022, 9, 11, 22, 0, 0, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_unusual_year)
|
|
{
|
|
// Towards the positive
|
|
EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20110203040506Z"sv, 2011, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("21010203040506Z"sv, 2101, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("30010203040506Z"sv, 3001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("40010203040506Z"sv, 4001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("90010203040506Z"sv, 9001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("99990203040506Z"sv, 9999, 2, 3, 4, 5, 6, 0);
|
|
|
|
// Towards zero
|
|
EXPECT_DATETIME("20010203040506Z"sv, 2001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("19990203040506Z"sv, 1999, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("19500203040506Z"sv, 1950, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("19010203040506Z"sv, 1901, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("18010203040506Z"sv, 1801, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("15010203040506Z"sv, 1501, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("10010203040506Z"sv, 1001, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("01010203040506Z"sv, 101, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("00110203040506Z"sv, 11, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("00010203040506Z"sv, 1, 2, 3, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("00000203040506Z"sv, 0, 2, 3, 4, 5, 6, 0);
|
|
|
|
// Problematic dates
|
|
EXPECT_DATETIME("20200229040506Z"sv, 2020, 2, 29, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("20000229040506Z"sv, 2000, 2, 29, 4, 5, 6, 0);
|
|
EXPECT_DATETIME("24000229040506Z"sv, 2400, 2, 29, 4, 5, 6, 0);
|
|
}
|
|
|
|
TEST_CASE(test_generalized_nonexistent_dates)
|
|
{
|
|
// The following dates don't exist. I'm not sure what the "correct" result is,
|
|
// but we need to make sure that we don't crash.
|
|
(void)Crypto::ASN1::parse_generalized_time("20210229040506Z"sv); // Not a leap year (not divisible by 4)
|
|
(void)Crypto::ASN1::parse_generalized_time("21000229040506Z"sv); // Not a leap year (divisible by 100)
|
|
(void)Crypto::ASN1::parse_generalized_time("20220230040506Z"sv); // Never exists
|
|
(void)Crypto::ASN1::parse_generalized_time("20220631040506Z"sv); // Never exists
|
|
(void)Crypto::ASN1::parse_generalized_time("20220732040506Z"sv); // Never exists
|
|
|
|
// https://www.timeanddate.com/calendar/julian-gregorian-switch.html
|
|
(void)Crypto::ASN1::parse_generalized_time("15821214040506Z"sv); // Gregorian switch; France
|
|
(void)Crypto::ASN1::parse_generalized_time("15821011040506Z"sv); // Gregorian switch; Italy, Poland, Portugal, Spain
|
|
(void)Crypto::ASN1::parse_generalized_time("15830105040506Z"sv); // Gregorian switch; Germany (Catholic)
|
|
(void)Crypto::ASN1::parse_generalized_time("15831011040506Z"sv); // Gregorian switch; Austria
|
|
(void)Crypto::ASN1::parse_generalized_time("15871026040506Z"sv); // Gregorian switch; Hungary
|
|
(void)Crypto::ASN1::parse_generalized_time("16100826040506Z"sv); // Gregorian switch; Germany (old Prussia)
|
|
(void)Crypto::ASN1::parse_generalized_time("17000223040506Z"sv); // Gregorian switch; Germany (Protestant)
|
|
(void)Crypto::ASN1::parse_generalized_time("17520908040506Z"sv); // Gregorian switch; US, Canada, UK
|
|
(void)Crypto::ASN1::parse_generalized_time("18711225040506Z"sv); // Gregorian switch; Japan
|
|
(void)Crypto::ASN1::parse_generalized_time("19160407040506Z"sv); // Gregorian switch; Bulgaria
|
|
(void)Crypto::ASN1::parse_generalized_time("19180207040506Z"sv); // Gregorian switch; Estonia, Russia
|
|
(void)Crypto::ASN1::parse_generalized_time("19230222040506Z"sv); // Gregorian switch; Greece
|
|
(void)Crypto::ASN1::parse_generalized_time("19261224040506Z"sv); // Gregorian switch; Turkey
|
|
}
|
|
|
|
TEST_CASE(test_encoder_primitives)
|
|
{
|
|
auto roundtrip_value = [](auto value) {
|
|
Crypto::ASN1::Encoder encoder;
|
|
MUST(encoder.write(value));
|
|
auto encoded = encoder.finish();
|
|
Crypto::ASN1::Decoder decoder(encoded);
|
|
auto decoded = MUST(decoder.read<decltype(value)>());
|
|
EXPECT_EQ(decoded, value);
|
|
};
|
|
|
|
roundtrip_value(false);
|
|
roundtrip_value(true);
|
|
|
|
roundtrip_value(Crypto::UnsignedBigInteger { 0 });
|
|
roundtrip_value(Crypto::UnsignedBigInteger { 1 });
|
|
roundtrip_value(Crypto::UnsignedBigInteger { 2 }.shift_left(128));
|
|
roundtrip_value(Crypto::UnsignedBigInteger { 2 }.shift_left(256));
|
|
|
|
roundtrip_value(Vector { 1, 2, 840, 113549, 1, 1, 1 });
|
|
roundtrip_value(Vector { 1, 2, 840, 113549, 1, 1, 11 });
|
|
|
|
roundtrip_value(ByteString { "Hello, World!\n" });
|
|
|
|
roundtrip_value(nullptr);
|
|
|
|
roundtrip_value(Crypto::ASN1::BitStringView { { { 0x00, 0x01, 0x02, 0x03 } }, 3 });
|
|
}
|
|
|
|
TEST_CASE(test_encoder_constructed)
|
|
{
|
|
Crypto::ASN1::Encoder encoder;
|
|
/*
|
|
* RSAPrivateKey ::= SEQUENCE {
|
|
* version Version, -- Version ::= INTEGER { two-prime(0), multi(1) }
|
|
* modulus INTEGER, -- n
|
|
* publicExponent INTEGER, -- e
|
|
* privateExponent INTEGER, -- d
|
|
* prime1 INTEGER, -- p
|
|
* prime2 INTEGER, -- q
|
|
* exponent1 INTEGER, -- d mod (p-1)
|
|
* exponent2 INTEGER, -- d mod (q-1)
|
|
* coefficient INTEGER, -- (inverse of q) mod p
|
|
* otherPrimeInfos OtherPrimeInfos OPTIONAL
|
|
* }
|
|
*/
|
|
(void)encoder.write_constructed(Crypto::ASN1::Class::Universal, Crypto::ASN1::Kind::Sequence, [&] {
|
|
MUST(encoder.write(0u)); // version
|
|
MUST(encoder.write(0x1234u)); // modulus
|
|
MUST(encoder.write(0x10001u)); // publicExponent
|
|
MUST(encoder.write(0x5678u)); // privateExponent
|
|
MUST(encoder.write(0x9abcu)); // prime1
|
|
MUST(encoder.write(0xdef0u)); // prime2
|
|
MUST(encoder.write(0x1234u)); // exponent1
|
|
MUST(encoder.write(0x5678u)); // exponent2
|
|
MUST(encoder.write(0x9abcu)); // coefficient
|
|
});
|
|
auto encoded = encoder.finish();
|
|
Crypto::ASN1::Decoder decoder(encoded);
|
|
MUST(decoder.enter()); // Sequence
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0u); // version
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x1234u); // modulus
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x10001u); // publicExponent
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x5678u); // privateExponent
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x9abcu); // prime1
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0xdef0u); // prime2
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x1234u); // exponent1
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x5678u); // exponent2
|
|
EXPECT_EQ(MUST(decoder.read<Crypto::UnsignedBigInteger>()), 0x9abcu); // coefficient
|
|
EXPECT(decoder.eof()); // no otherPrimeInfos
|
|
MUST(decoder.leave()); // Sequence
|
|
EXPECT(decoder.eof()); // no other data
|
|
}
|