ladybird/Kernel/Memory/AddressSpace.cpp
Andreas Kling da24a937f5 Kernel: Don't wrap AddressSpace's RegionTree in SpinlockProtected
Now that AddressSpace itself is always SpinlockProtected, we don't
need to also wrap the RegionTree. Whoever has the AddressSpace locked
is free to poke around its tree.
2022-08-24 14:57:51 +02:00

420 lines
16 KiB
C++

/*
* Copyright (c) 2021-2022, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/API/MemoryLayout.h>
#include <Kernel/Arch/CPU.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/AddressSpace.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/InodeVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/Random.h>
#include <Kernel/Scheduler.h>
namespace Kernel::Memory {
ErrorOr<NonnullOwnPtr<AddressSpace>> AddressSpace::try_create(AddressSpace const* parent)
{
auto page_directory = TRY(PageDirectory::try_create_for_userspace());
VirtualRange total_range = [&]() -> VirtualRange {
if (parent)
return parent->m_region_tree.total_range();
constexpr FlatPtr userspace_range_base = USER_RANGE_BASE;
FlatPtr const userspace_range_ceiling = USER_RANGE_CEILING;
size_t random_offset = (get_fast_random<u8>() % 2 * MiB) & PAGE_MASK;
FlatPtr base = userspace_range_base + random_offset;
return VirtualRange(VirtualAddress { base }, userspace_range_ceiling - base);
}();
auto space = TRY(adopt_nonnull_own_or_enomem(new (nothrow) AddressSpace(move(page_directory), total_range)));
space->page_directory().set_space({}, *space);
return space;
}
AddressSpace::AddressSpace(NonnullLockRefPtr<PageDirectory> page_directory, VirtualRange total_range)
: m_page_directory(move(page_directory))
, m_region_tree(total_range)
{
}
AddressSpace::~AddressSpace() = default;
ErrorOr<void> AddressSpace::unmap_mmap_range(VirtualAddress addr, size_t size)
{
if (!size)
return EINVAL;
auto range_to_unmap = TRY(VirtualRange::expand_to_page_boundaries(addr.get(), size));
if (!is_user_range(range_to_unmap))
return EFAULT;
if (auto* whole_region = find_region_from_range(range_to_unmap)) {
if (!whole_region->is_mmap())
return EPERM;
PerformanceManager::add_unmap_perf_event(Process::current(), whole_region->range());
deallocate_region(*whole_region);
return {};
}
if (auto* old_region = find_region_containing(range_to_unmap)) {
if (!old_region->is_mmap())
return EPERM;
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address.
auto region = take_region(*old_region);
region->unmap();
auto new_regions = TRY(try_split_region_around_range(*region, range_to_unmap));
// And finally we map the new region(s) using our page directory (they were just allocated and don't have one).
for (auto* new_region : new_regions) {
// TODO: Ideally we should do this in a way that can be rolled back on failure, as failing here
// leaves the caller in an undefined state.
TRY(new_region->map(page_directory()));
}
PerformanceManager::add_unmap_perf_event(Process::current(), range_to_unmap);
return {};
}
// Try again while checking multiple regions at a time.
auto const& regions = TRY(find_regions_intersecting(range_to_unmap));
if (regions.is_empty())
return {};
// Check if any of the regions is not mmap'ed, to not accidentally
// error out with just half a region map left.
for (auto* region : regions) {
if (!region->is_mmap())
return EPERM;
}
Vector<Region*, 2> new_regions;
for (auto* old_region : regions) {
// If it's a full match we can remove the entire old region.
if (old_region->range().intersect(range_to_unmap).size() == old_region->size()) {
deallocate_region(*old_region);
continue;
}
// Remove the old region from our regions tree, since were going to add another region
// with the exact same start address.
auto region = take_region(*old_region);
region->unmap();
// Otherwise, split the regions and collect them for future mapping.
auto split_regions = TRY(try_split_region_around_range(*region, range_to_unmap));
TRY(new_regions.try_extend(split_regions));
}
// And finally map the new region(s) into our page directory.
for (auto* new_region : new_regions) {
// TODO: Ideally we should do this in a way that can be rolled back on failure, as failing here
// leaves the caller in an undefined state.
TRY(new_region->map(page_directory()));
}
PerformanceManager::add_unmap_perf_event(Process::current(), range_to_unmap);
return {};
}
ErrorOr<Region*> AddressSpace::try_allocate_split_region(Region const& source_region, VirtualRange const& range, size_t offset_in_vmobject)
{
OwnPtr<KString> region_name;
if (!source_region.name().is_null())
region_name = TRY(KString::try_create(source_region.name()));
auto new_region = TRY(Region::create_unplaced(
source_region.vmobject(), offset_in_vmobject, move(region_name), source_region.access(), source_region.is_cacheable() ? Region::Cacheable::Yes : Region::Cacheable::No, source_region.is_shared()));
new_region->set_syscall_region(source_region.is_syscall_region());
new_region->set_mmap(source_region.is_mmap(), source_region.mmapped_from_readable(), source_region.mmapped_from_writable());
new_region->set_stack(source_region.is_stack());
size_t page_offset_in_source_region = (offset_in_vmobject - source_region.offset_in_vmobject()) / PAGE_SIZE;
for (size_t i = 0; i < new_region->page_count(); ++i) {
if (source_region.should_cow(page_offset_in_source_region + i))
TRY(new_region->set_should_cow(i, true));
}
TRY(m_region_tree.place_specifically(*new_region, range));
return new_region.leak_ptr();
}
ErrorOr<Region*> AddressSpace::allocate_region(RandomizeVirtualAddress randomize_virtual_address, VirtualAddress requested_address, size_t requested_size, size_t requested_alignment, StringView name, int prot, AllocationStrategy strategy)
{
if (!requested_address.is_page_aligned())
return EINVAL;
auto size = TRY(Memory::page_round_up(requested_size));
auto alignment = TRY(Memory::page_round_up(requested_alignment));
OwnPtr<KString> region_name;
if (!name.is_null())
region_name = TRY(KString::try_create(name));
auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy));
auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(region_name), prot_to_region_access_flags(prot)));
if (requested_address.is_null()) {
TRY(m_region_tree.place_anywhere(*region, randomize_virtual_address, size, alignment));
} else {
TRY(m_region_tree.place_specifically(*region, VirtualRange { requested_address, size }));
}
TRY(region->map(page_directory(), ShouldFlushTLB::No));
return region.leak_ptr();
}
ErrorOr<Region*> AddressSpace::allocate_region_with_vmobject(VirtualRange requested_range, NonnullLockRefPtr<VMObject> vmobject, size_t offset_in_vmobject, StringView name, int prot, bool shared)
{
return allocate_region_with_vmobject(RandomizeVirtualAddress::Yes, requested_range.base(), requested_range.size(), PAGE_SIZE, move(vmobject), offset_in_vmobject, name, prot, shared);
}
ErrorOr<Region*> AddressSpace::allocate_region_with_vmobject(RandomizeVirtualAddress randomize_virtual_address, VirtualAddress requested_address, size_t requested_size, size_t requested_alignment, NonnullLockRefPtr<VMObject> vmobject, size_t offset_in_vmobject, StringView name, int prot, bool shared)
{
if (!requested_address.is_page_aligned())
return EINVAL;
auto size = TRY(page_round_up(requested_size));
auto alignment = TRY(page_round_up(requested_alignment));
if (Checked<size_t>::addition_would_overflow(offset_in_vmobject, requested_size))
return EOVERFLOW;
size_t end_in_vmobject = offset_in_vmobject + requested_size;
if (offset_in_vmobject >= vmobject->size()) {
dbgln("allocate_region_with_vmobject: Attempt to allocate a region with an offset past the end of its VMObject.");
return EINVAL;
}
if (end_in_vmobject > vmobject->size()) {
dbgln("allocate_region_with_vmobject: Attempt to allocate a region with an end past the end of its VMObject.");
return EINVAL;
}
offset_in_vmobject &= PAGE_MASK;
OwnPtr<KString> region_name;
if (!name.is_null())
region_name = TRY(KString::try_create(name));
auto region = TRY(Region::create_unplaced(move(vmobject), offset_in_vmobject, move(region_name), prot_to_region_access_flags(prot), Region::Cacheable::Yes, shared));
if (requested_address.is_null())
TRY(m_region_tree.place_anywhere(*region, randomize_virtual_address, size, alignment));
else
TRY(m_region_tree.place_specifically(*region, VirtualRange { VirtualAddress { requested_address }, size }));
ArmedScopeGuard remove_region_from_tree_on_failure = [&] {
// At this point the region is already part of the Process region tree, so we have to make sure
// we remove it from the tree before returning an error, or else the Region tree will contain
// a dangling pointer to the free'd Region instance
m_region_tree.remove(*region);
};
if (prot == PROT_NONE) {
// For PROT_NONE mappings, we don't have to set up any page table mappings.
// We do still need to attach the region to the page_directory though.
region->set_page_directory(page_directory());
} else {
TRY(region->map(page_directory(), ShouldFlushTLB::No));
}
remove_region_from_tree_on_failure.disarm();
return region.leak_ptr();
}
void AddressSpace::deallocate_region(Region& region)
{
(void)take_region(region);
}
NonnullOwnPtr<Region> AddressSpace::take_region(Region& region)
{
auto did_remove = m_region_tree.remove(region);
VERIFY(did_remove);
return NonnullOwnPtr { NonnullOwnPtr<Region>::Adopt, region };
}
Region* AddressSpace::find_region_from_range(VirtualRange const& range)
{
auto* found_region = m_region_tree.regions().find(range.base().get());
if (!found_region)
return nullptr;
auto& region = *found_region;
auto rounded_range_size = page_round_up(range.size());
if (rounded_range_size.is_error() || region.size() != rounded_range_size.value())
return nullptr;
return &region;
}
Region* AddressSpace::find_region_containing(VirtualRange const& range)
{
return m_region_tree.find_region_containing(range);
}
ErrorOr<Vector<Region*, 4>> AddressSpace::find_regions_intersecting(VirtualRange const& range)
{
Vector<Region*, 4> regions = {};
size_t total_size_collected = 0;
auto* found_region = m_region_tree.regions().find_largest_not_above(range.base().get());
if (!found_region)
return regions;
for (auto iter = m_region_tree.regions().begin_from(*found_region); !iter.is_end(); ++iter) {
auto const& iter_range = (*iter).range();
if (iter_range.base() < range.end() && iter_range.end() > range.base()) {
TRY(regions.try_append(&*iter));
total_size_collected += (*iter).size() - iter_range.intersect(range).size();
if (total_size_collected == range.size())
break;
}
}
return regions;
}
// Carve out a virtual address range from a region and return the two regions on either side
ErrorOr<Vector<Region*, 2>> AddressSpace::try_split_region_around_range(Region const& source_region, VirtualRange const& desired_range)
{
VirtualRange old_region_range = source_region.range();
auto remaining_ranges_after_unmap = old_region_range.carve(desired_range);
VERIFY(!remaining_ranges_after_unmap.is_empty());
auto try_make_replacement_region = [&](VirtualRange const& new_range) -> ErrorOr<Region*> {
VERIFY(old_region_range.contains(new_range));
size_t new_range_offset_in_vmobject = source_region.offset_in_vmobject() + (new_range.base().get() - old_region_range.base().get());
return try_allocate_split_region(source_region, new_range, new_range_offset_in_vmobject);
};
Vector<Region*, 2> new_regions;
for (auto& new_range : remaining_ranges_after_unmap) {
auto* new_region = TRY(try_make_replacement_region(new_range));
new_regions.unchecked_append(new_region);
}
return new_regions;
}
void AddressSpace::dump_regions()
{
dbgln("Process regions:");
#if ARCH(I386)
char const* addr_padding = "";
#else
char const* addr_padding = " ";
#endif
dbgln("BEGIN{} END{} SIZE{} ACCESS NAME",
addr_padding, addr_padding, addr_padding);
for (auto const& region : m_region_tree.regions()) {
dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(),
region.is_readable() ? 'R' : ' ',
region.is_writable() ? 'W' : ' ',
region.is_executable() ? 'X' : ' ',
region.is_shared() ? 'S' : ' ',
region.is_stack() ? 'T' : ' ',
region.is_syscall_region() ? 'C' : ' ',
region.name());
}
MM.dump_kernel_regions();
}
void AddressSpace::remove_all_regions(Badge<Process>)
{
VERIFY(Thread::current() == g_finalizer);
{
SpinlockLocker pd_locker(m_page_directory->get_lock());
for (auto& region : m_region_tree.regions())
region.unmap_with_locks_held(ShouldFlushTLB::No, pd_locker);
}
m_region_tree.delete_all_regions_assuming_they_are_unmapped();
}
size_t AddressSpace::amount_dirty_private() const
{
// FIXME: This gets a bit more complicated for Regions sharing the same underlying VMObject.
// The main issue I'm thinking of is when the VMObject has physical pages that none of the Regions are mapping.
// That's probably a situation that needs to be looked at in general.
size_t amount = 0;
for (auto const& region : m_region_tree.regions()) {
if (!region.is_shared())
amount += region.amount_dirty();
}
return amount;
}
ErrorOr<size_t> AddressSpace::amount_clean_inode() const
{
HashTable<LockRefPtr<InodeVMObject>> vmobjects;
for (auto const& region : m_region_tree.regions()) {
if (region.vmobject().is_inode())
TRY(vmobjects.try_set(&static_cast<InodeVMObject const&>(region.vmobject())));
}
size_t amount = 0;
for (auto& vmobject : vmobjects)
amount += vmobject->amount_clean();
return amount;
}
size_t AddressSpace::amount_virtual() const
{
size_t amount = 0;
for (auto const& region : m_region_tree.regions()) {
amount += region.size();
}
return amount;
}
size_t AddressSpace::amount_resident() const
{
// FIXME: This will double count if multiple regions use the same physical page.
size_t amount = 0;
for (auto const& region : m_region_tree.regions()) {
amount += region.amount_resident();
}
return amount;
}
size_t AddressSpace::amount_shared() const
{
// FIXME: This will double count if multiple regions use the same physical page.
// FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts,
// and each PhysicalPage is only reffed by its VMObject. This needs to be refactored
// so that every Region contributes +1 ref to each of its PhysicalPages.
size_t amount = 0;
for (auto const& region : m_region_tree.regions()) {
amount += region.amount_shared();
}
return amount;
}
size_t AddressSpace::amount_purgeable_volatile() const
{
size_t amount = 0;
for (auto const& region : m_region_tree.regions()) {
if (!region.vmobject().is_anonymous())
continue;
auto const& vmobject = static_cast<AnonymousVMObject const&>(region.vmobject());
if (vmobject.is_purgeable() && vmobject.is_volatile())
amount += region.amount_resident();
}
return amount;
}
size_t AddressSpace::amount_purgeable_nonvolatile() const
{
size_t amount = 0;
for (auto const& region : m_region_tree.regions()) {
if (!region.vmobject().is_anonymous())
continue;
auto const& vmobject = static_cast<AnonymousVMObject const&>(region.vmobject());
if (vmobject.is_purgeable() && !vmobject.is_volatile())
amount += region.amount_resident();
}
return amount;
}
}