ladybird/Libraries/LibJS/Runtime/MathObject.cpp

182 lines
5.5 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/FlyString.h>
#include <AK/Function.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/MathObject.h>
#include <math.h>
namespace JS {
MathObject::MathObject()
{
put_native_function("abs", abs, 1);
put_native_function("random", random);
put_native_function("sqrt", sqrt, 1);
put_native_function("floor", floor, 1);
put_native_function("ceil", ceil, 1);
put_native_function("round", round, 1);
put_native_function("max", max, 2);
put_native_function("min", min, 2);
put_native_function("trunc", trunc, 1);
put_native_function("sin", sin, 1);
put_native_function("cos", cos, 1);
put_native_function("tan", tan, 1);
put("E", Value(M_E));
put("LN2", Value(M_LN2));
put("LN10", Value(M_LN10));
put("LOG2E", Value(log2(M_E)));
put("LOG10E", Value(log10(M_E)));
put("PI", Value(M_PI));
put("SQRT1_2", Value(::sqrt(1.0 / 2.0)));
put("SQRT2", Value(::sqrt(2)));
}
MathObject::~MathObject()
{
}
Value MathObject::abs(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
}
Value MathObject::random(Interpreter&)
{
#ifdef __serenity__
double r = (double)arc4random() / (double)UINT32_MAX;
#else
double r = (double)rand() / (double)RAND_MAX;
#endif
return Value(r);
}
Value MathObject::sqrt(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::sqrt(number.as_double()));
}
Value MathObject::floor(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::floor(number.as_double()));
}
Value MathObject::ceil(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::ceil(number.as_double()));
}
Value MathObject::round(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
// FIXME: Use ::round() instead of ::roundf().
return Value(::roundf(number.as_double()));
}
Value MathObject::max(Interpreter& interpreter)
{
if (!interpreter.argument_count()) {
return Value(-js_infinity().as_double());
} else if (interpreter.argument_count() == 1) {
return interpreter.argument(0).to_number();
} else {
Value max = interpreter.argument(0).to_number();
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
Value cur = interpreter.argument(i).to_number();
max = Value(cur.as_double() > max.as_double() ? cur : max);
}
return max;
}
}
Value MathObject::min(Interpreter& interpreter)
{
if (!interpreter.argument_count())
return js_infinity();
if (interpreter.argument_count() == 1)
return interpreter.argument(0).to_number();
Value min = interpreter.argument(0).to_number();
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
Value cur = interpreter.argument(i).to_number();
min = Value(cur.as_double() < min.as_double() ? cur : min);
}
return min;
}
Value MathObject::trunc(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
if (number.as_double() < 0)
return MathObject::ceil(interpreter);
return MathObject::floor(interpreter);
}
Value MathObject::sin(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::sin(number.as_double()));
}
Value MathObject::cos(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::cos(number.as_double()));
}
Value MathObject::tan(Interpreter& interpreter)
{
auto number = interpreter.argument(0).to_number();
if (number.is_nan())
return js_nan();
return Value(::tan(number.as_double()));
}
}