182 lines
5.5 KiB
C++
182 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/FlyString.h>
|
|
#include <AK/Function.h>
|
|
#include <LibJS/Interpreter.h>
|
|
#include <LibJS/Runtime/MathObject.h>
|
|
#include <math.h>
|
|
|
|
namespace JS {
|
|
|
|
MathObject::MathObject()
|
|
{
|
|
put_native_function("abs", abs, 1);
|
|
put_native_function("random", random);
|
|
put_native_function("sqrt", sqrt, 1);
|
|
put_native_function("floor", floor, 1);
|
|
put_native_function("ceil", ceil, 1);
|
|
put_native_function("round", round, 1);
|
|
put_native_function("max", max, 2);
|
|
put_native_function("min", min, 2);
|
|
put_native_function("trunc", trunc, 1);
|
|
put_native_function("sin", sin, 1);
|
|
put_native_function("cos", cos, 1);
|
|
put_native_function("tan", tan, 1);
|
|
|
|
put("E", Value(M_E));
|
|
put("LN2", Value(M_LN2));
|
|
put("LN10", Value(M_LN10));
|
|
put("LOG2E", Value(log2(M_E)));
|
|
put("LOG10E", Value(log10(M_E)));
|
|
put("PI", Value(M_PI));
|
|
put("SQRT1_2", Value(::sqrt(1.0 / 2.0)));
|
|
put("SQRT2", Value(::sqrt(2)));
|
|
}
|
|
|
|
MathObject::~MathObject()
|
|
{
|
|
}
|
|
|
|
Value MathObject::abs(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
|
|
}
|
|
|
|
Value MathObject::random(Interpreter&)
|
|
{
|
|
#ifdef __serenity__
|
|
double r = (double)arc4random() / (double)UINT32_MAX;
|
|
#else
|
|
double r = (double)rand() / (double)RAND_MAX;
|
|
#endif
|
|
return Value(r);
|
|
}
|
|
|
|
Value MathObject::sqrt(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::sqrt(number.as_double()));
|
|
}
|
|
|
|
Value MathObject::floor(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::floor(number.as_double()));
|
|
}
|
|
|
|
Value MathObject::ceil(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::ceil(number.as_double()));
|
|
}
|
|
|
|
Value MathObject::round(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
// FIXME: Use ::round() instead of ::roundf().
|
|
return Value(::roundf(number.as_double()));
|
|
}
|
|
|
|
Value MathObject::max(Interpreter& interpreter)
|
|
{
|
|
if (!interpreter.argument_count()) {
|
|
return Value(-js_infinity().as_double());
|
|
} else if (interpreter.argument_count() == 1) {
|
|
return interpreter.argument(0).to_number();
|
|
} else {
|
|
Value max = interpreter.argument(0).to_number();
|
|
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
|
|
Value cur = interpreter.argument(i).to_number();
|
|
max = Value(cur.as_double() > max.as_double() ? cur : max);
|
|
}
|
|
return max;
|
|
}
|
|
}
|
|
|
|
Value MathObject::min(Interpreter& interpreter)
|
|
{
|
|
if (!interpreter.argument_count())
|
|
return js_infinity();
|
|
|
|
if (interpreter.argument_count() == 1)
|
|
return interpreter.argument(0).to_number();
|
|
|
|
Value min = interpreter.argument(0).to_number();
|
|
for (size_t i = 1; i < interpreter.argument_count(); ++i) {
|
|
Value cur = interpreter.argument(i).to_number();
|
|
min = Value(cur.as_double() < min.as_double() ? cur : min);
|
|
}
|
|
return min;
|
|
}
|
|
|
|
Value MathObject::trunc(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
|
|
if (number.as_double() < 0)
|
|
return MathObject::ceil(interpreter);
|
|
return MathObject::floor(interpreter);
|
|
}
|
|
|
|
Value MathObject::sin(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::sin(number.as_double()));
|
|
}
|
|
|
|
Value MathObject::cos(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::cos(number.as_double()));
|
|
}
|
|
|
|
Value MathObject::tan(Interpreter& interpreter)
|
|
{
|
|
auto number = interpreter.argument(0).to_number();
|
|
if (number.is_nan())
|
|
return js_nan();
|
|
return Value(::tan(number.as_double()));
|
|
}
|
|
|
|
}
|