ladybird/Kernel/VM/InodeVMObject.cpp
Andreas Kling b614462079 Kernel: Include the dirty bits when cloning an InodeVMObject
Now that (private) InodeVMObjects can be CoW-cloned on fork(), we need
to make sure we clone the dirty bits as well.
2020-03-01 12:11:50 +01:00

185 lines
5.6 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/VM/InodeVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/Region.h>
namespace Kernel {
InodeVMObject::InodeVMObject(Inode& inode, size_t size)
: VMObject(size)
, m_inode(inode)
, m_dirty_pages(page_count(), false)
{
}
InodeVMObject::InodeVMObject(const InodeVMObject& other)
: VMObject(other)
, m_inode(other.m_inode)
, m_dirty_pages(page_count(), false)
{
for (size_t i = 0; i < page_count(); ++i)
m_dirty_pages.set(i, other.m_dirty_pages.get(i));
}
InodeVMObject::~InodeVMObject()
{
}
size_t InodeVMObject::amount_clean() const
{
size_t count = 0;
ASSERT(page_count() == m_dirty_pages.size());
for (size_t i = 0; i < page_count(); ++i) {
if (!m_dirty_pages.get(i) && m_physical_pages[i])
++count;
}
return count * PAGE_SIZE;
}
size_t InodeVMObject::amount_dirty() const
{
size_t count = 0;
for (size_t i = 0; i < m_dirty_pages.size(); ++i) {
if (m_dirty_pages.get(i))
++count;
}
return count * PAGE_SIZE;
}
void InodeVMObject::inode_size_changed(Badge<Inode>, size_t old_size, size_t new_size)
{
dbg() << "VMObject::inode_size_changed: {" << m_inode->fsid() << ":" << m_inode->index() << "} " << old_size << " -> " << new_size;
InterruptDisabler disabler;
auto new_page_count = PAGE_ROUND_UP(new_size) / PAGE_SIZE;
m_physical_pages.resize(new_page_count);
m_dirty_pages.grow(new_page_count, false);
// FIXME: Consolidate with inode_contents_changed() so we only do a single walk.
for_each_region([](auto& region) {
region.remap();
});
}
void InodeVMObject::inode_contents_changed(Badge<Inode>, off_t offset, ssize_t size, const u8* data)
{
(void)size;
(void)data;
InterruptDisabler disabler;
ASSERT(offset >= 0);
// FIXME: Only invalidate the parts that actually changed.
for (auto& physical_page : m_physical_pages)
physical_page = nullptr;
#if 0
size_t current_offset = offset;
size_t remaining_bytes = size;
const u8* data_ptr = data;
auto to_page_index = [] (size_t offset) -> size_t {
return offset / PAGE_SIZE;
};
if (current_offset & PAGE_MASK) {
size_t page_index = to_page_index(current_offset);
size_t bytes_to_copy = min(size, PAGE_SIZE - (current_offset & PAGE_MASK));
if (m_physical_pages[page_index]) {
auto* ptr = MM.quickmap_page(*m_physical_pages[page_index]);
memcpy(ptr, data_ptr, bytes_to_copy);
MM.unquickmap_page();
}
current_offset += bytes_to_copy;
data += bytes_to_copy;
remaining_bytes -= bytes_to_copy;
}
for (size_t page_index = to_page_index(current_offset); page_index < m_physical_pages.size(); ++page_index) {
size_t bytes_to_copy = PAGE_SIZE - (current_offset & PAGE_MASK);
if (m_physical_pages[page_index]) {
auto* ptr = MM.quickmap_page(*m_physical_pages[page_index]);
memcpy(ptr, data_ptr, bytes_to_copy);
MM.unquickmap_page();
}
current_offset += bytes_to_copy;
data += bytes_to_copy;
}
#endif
// FIXME: Consolidate with inode_size_changed() so we only do a single walk.
for_each_region([](auto& region) {
region.remap();
});
}
int InodeVMObject::release_all_clean_pages()
{
LOCKER(m_paging_lock);
return release_all_clean_pages_impl();
}
int InodeVMObject::release_all_clean_pages_impl()
{
int count = 0;
InterruptDisabler disabler;
for (size_t i = 0; i < page_count(); ++i) {
if (!m_dirty_pages.get(i) && m_physical_pages[i]) {
m_physical_pages[i] = nullptr;
++count;
}
}
for_each_region([](auto& region) {
region.remap();
});
return count;
}
u32 InodeVMObject::writable_mappings() const
{
u32 count = 0;
const_cast<InodeVMObject&>(*this).for_each_region([&](auto& region) {
if (region.is_writable())
++count;
});
return count;
}
u32 InodeVMObject::executable_mappings() const
{
u32 count = 0;
const_cast<InodeVMObject&>(*this).for_each_region([&](auto& region) {
if (region.is_executable())
++count;
});
return count;
}
}