ladybird/Kernel/VM/Region.cpp
Brian Gianforcaro 1682f0b760 Everything: Move to SPDX license identifiers in all files.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.

See: https://spdx.dev/resources/use/#identifiers

This was done with the `ambr` search and replace tool.

 ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
2021-04-22 11:22:27 +02:00

587 lines
21 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Memory.h>
#include <AK/StringView.h>
#include <Kernel/Debug.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Panic.h>
#include <Kernel/Process.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/SharedInodeVMObject.h>
namespace Kernel {
Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, String name, Region::Access access, Cacheable cacheable, bool shared)
: PurgeablePageRanges(vmobject)
, m_range(range)
, m_offset_in_vmobject(offset_in_vmobject)
, m_vmobject(move(vmobject))
, m_name(move(name))
, m_access(access | ((access & 0x7) << 4))
, m_shared(shared)
, m_cacheable(cacheable == Cacheable::Yes)
{
VERIFY(m_range.base().is_page_aligned());
VERIFY(m_range.size());
VERIFY((m_range.size() % PAGE_SIZE) == 0);
m_vmobject->ref_region();
register_purgeable_page_ranges();
MM.register_region(*this);
}
Region::~Region()
{
m_vmobject->unref_region();
unregister_purgeable_page_ranges();
// Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
// Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
// find the address<->region mappings in an invalid state there.
ScopedSpinLock lock(s_mm_lock);
if (m_page_directory) {
unmap(ShouldDeallocateVirtualMemoryRange::Yes);
VERIFY(!m_page_directory);
}
MM.unregister_region(*this);
}
void Region::register_purgeable_page_ranges()
{
if (m_vmobject->is_anonymous()) {
auto& vmobject = static_cast<AnonymousVMObject&>(*m_vmobject);
vmobject.register_purgeable_page_ranges(*this);
}
}
void Region::unregister_purgeable_page_ranges()
{
if (m_vmobject->is_anonymous()) {
auto& vmobject = static_cast<AnonymousVMObject&>(*m_vmobject);
vmobject.unregister_purgeable_page_ranges(*this);
}
}
OwnPtr<Region> Region::clone(Process& new_owner)
{
VERIFY(Process::current());
ScopedSpinLock lock(s_mm_lock);
if (m_shared) {
VERIFY(!m_stack);
if (vmobject().is_inode())
VERIFY(vmobject().is_shared_inode());
// Create a new region backed by the same VMObject.
auto region = Region::create_user_accessible(
&new_owner, m_range, m_vmobject, m_offset_in_vmobject, m_name, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
if (m_vmobject->is_anonymous())
region->copy_purgeable_page_ranges(*this);
region->set_mmap(m_mmap);
region->set_shared(m_shared);
region->set_syscall_region(is_syscall_region());
return region;
}
if (vmobject().is_inode())
VERIFY(vmobject().is_private_inode());
auto vmobject_clone = vmobject().clone();
if (!vmobject_clone)
return {};
// Set up a COW region. The parent (this) region becomes COW as well!
remap();
auto clone_region = Region::create_user_accessible(
&new_owner, m_range, vmobject_clone.release_nonnull(), m_offset_in_vmobject, m_name, access(), m_cacheable ? Cacheable::Yes : Cacheable::No, m_shared);
if (m_vmobject->is_anonymous())
clone_region->copy_purgeable_page_ranges(*this);
if (m_stack) {
VERIFY(is_readable());
VERIFY(is_writable());
VERIFY(vmobject().is_anonymous());
clone_region->set_stack(true);
}
clone_region->set_syscall_region(is_syscall_region());
clone_region->set_mmap(m_mmap);
return clone_region;
}
void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
{
if (m_vmobject.ptr() == obj.ptr())
return;
unregister_purgeable_page_ranges();
m_vmobject->unref_region();
m_vmobject = move(obj);
m_vmobject->ref_region();
register_purgeable_page_ranges();
}
bool Region::is_volatile(VirtualAddress vaddr, size_t size) const
{
if (!m_vmobject->is_anonymous())
return false;
auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
size_t first_page_index = page_round_down(offset_in_vmobject) / PAGE_SIZE;
size_t last_page_index = page_round_up(offset_in_vmobject + size) / PAGE_SIZE;
return is_volatile_range({ first_page_index, last_page_index - first_page_index });
}
auto Region::set_volatile(VirtualAddress vaddr, size_t size, bool is_volatile, bool& was_purged) -> SetVolatileError
{
was_purged = false;
if (!m_vmobject->is_anonymous())
return SetVolatileError::NotPurgeable;
auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
if (is_volatile) {
// If marking pages as volatile, be prudent by not marking
// partial pages volatile to prevent potentially non-volatile
// data to be discarded. So rund up the first page and round
// down the last page.
size_t first_page_index = page_round_up(offset_in_vmobject) / PAGE_SIZE;
size_t last_page_index = page_round_down(offset_in_vmobject + size) / PAGE_SIZE;
if (first_page_index != last_page_index)
add_volatile_range({ first_page_index, last_page_index - first_page_index });
} else {
// If marking pages as non-volatile, round down the first page
// and round up the last page to make sure the beginning and
// end of the range doesn't inadvertedly get discarded.
size_t first_page_index = page_round_down(offset_in_vmobject) / PAGE_SIZE;
size_t last_page_index = page_round_up(offset_in_vmobject + size) / PAGE_SIZE;
switch (remove_volatile_range({ first_page_index, last_page_index - first_page_index }, was_purged)) {
case PurgeablePageRanges::RemoveVolatileError::Success:
case PurgeablePageRanges::RemoveVolatileError::SuccessNoChange:
break;
case PurgeablePageRanges::RemoveVolatileError::OutOfMemory:
return SetVolatileError::OutOfMemory;
}
}
return SetVolatileError::Success;
}
size_t Region::cow_pages() const
{
if (!vmobject().is_anonymous())
return 0;
return static_cast<const AnonymousVMObject&>(vmobject()).cow_pages();
}
size_t Region::amount_dirty() const
{
if (!vmobject().is_inode())
return amount_resident();
return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
}
size_t Region::amount_resident() const
{
size_t bytes = 0;
for (size_t i = 0; i < page_count(); ++i) {
auto* page = physical_page(i);
if (page && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
bytes += PAGE_SIZE;
}
return bytes;
}
size_t Region::amount_shared() const
{
size_t bytes = 0;
for (size_t i = 0; i < page_count(); ++i) {
auto* page = physical_page(i);
if (page && page->ref_count() > 1 && !page->is_shared_zero_page() && !page->is_lazy_committed_page())
bytes += PAGE_SIZE;
}
return bytes;
}
NonnullOwnPtr<Region> Region::create_user_accessible(Process* owner, const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, String name, Region::Access access, Cacheable cacheable, bool shared)
{
auto region = adopt_own(*new Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, shared));
if (owner)
region->m_owner = owner->make_weak_ptr();
return region;
}
NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, String name, Region::Access access, Cacheable cacheable)
{
return adopt_own(*new Region(range, move(vmobject), offset_in_vmobject, move(name), access, cacheable, false));
}
bool Region::should_cow(size_t page_index) const
{
if (!vmobject().is_anonymous())
return false;
return static_cast<const AnonymousVMObject&>(vmobject()).should_cow(first_page_index() + page_index, m_shared);
}
void Region::set_should_cow(size_t page_index, bool cow)
{
VERIFY(!m_shared);
if (vmobject().is_anonymous())
static_cast<AnonymousVMObject&>(vmobject()).set_should_cow(first_page_index() + page_index, cow);
}
bool Region::map_individual_page_impl(size_t page_index)
{
VERIFY(m_page_directory->get_lock().own_lock());
auto page_vaddr = vaddr_from_page_index(page_index);
bool user_allowed = page_vaddr.get() >= 0x00800000 && is_user_address(page_vaddr);
if (is_mmap() && !user_allowed) {
PANIC("About to map mmap'ed page at a kernel address");
}
auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
if (!pte)
return false;
auto* page = physical_page(page_index);
if (!page || (!is_readable() && !is_writable())) {
pte->clear();
} else {
pte->set_cache_disabled(!m_cacheable);
pte->set_physical_page_base(page->paddr().get());
pte->set_present(true);
if (page->is_shared_zero_page() || page->is_lazy_committed_page() || should_cow(page_index))
pte->set_writable(false);
else
pte->set_writable(is_writable());
if (Processor::current().has_feature(CPUFeature::NX))
pte->set_execute_disabled(!is_executable());
pte->set_user_allowed(user_allowed);
}
return true;
}
bool Region::do_remap_vmobject_page_range(size_t page_index, size_t page_count)
{
bool success = true;
VERIFY(s_mm_lock.own_lock());
if (!m_page_directory)
return success; // not an error, region may have not yet mapped it
if (!translate_vmobject_page_range(page_index, page_count))
return success; // not an error, region doesn't map this page range
ScopedSpinLock page_lock(m_page_directory->get_lock());
size_t index = page_index;
while (index < page_index + page_count) {
if (!map_individual_page_impl(index)) {
success = false;
break;
}
index++;
}
if (index > page_index)
MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index), index - page_index);
return success;
}
bool Region::remap_vmobject_page_range(size_t page_index, size_t page_count)
{
bool success = true;
ScopedSpinLock lock(s_mm_lock);
auto& vmobject = this->vmobject();
if (vmobject.is_shared_by_multiple_regions()) {
vmobject.for_each_region([&](auto& region) {
if (!region.do_remap_vmobject_page_range(page_index, page_count))
success = false;
});
} else {
if (!do_remap_vmobject_page_range(page_index, page_count))
success = false;
}
return success;
}
bool Region::do_remap_vmobject_page(size_t page_index, bool with_flush)
{
ScopedSpinLock lock(s_mm_lock);
if (!m_page_directory)
return true; // not an error, region may have not yet mapped it
if (!translate_vmobject_page(page_index))
return true; // not an error, region doesn't map this page
ScopedSpinLock page_lock(m_page_directory->get_lock());
VERIFY(physical_page(page_index));
bool success = map_individual_page_impl(page_index);
if (with_flush)
MM.flush_tlb(m_page_directory, vaddr_from_page_index(page_index));
return success;
}
bool Region::remap_vmobject_page(size_t page_index, bool with_flush)
{
bool success = true;
ScopedSpinLock lock(s_mm_lock);
auto& vmobject = this->vmobject();
if (vmobject.is_shared_by_multiple_regions()) {
vmobject.for_each_region([&](auto& region) {
if (!region.do_remap_vmobject_page(page_index, with_flush))
success = false;
});
} else {
if (!do_remap_vmobject_page(page_index, with_flush))
success = false;
}
return success;
}
void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
{
ScopedSpinLock lock(s_mm_lock);
if (!m_page_directory)
return;
ScopedSpinLock page_lock(m_page_directory->get_lock());
size_t count = page_count();
for (size_t i = 0; i < count; ++i) {
auto vaddr = vaddr_from_page_index(i);
MM.release_pte(*m_page_directory, vaddr, i == count - 1);
}
MM.flush_tlb(m_page_directory, vaddr(), page_count());
if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes) {
if (m_page_directory->range_allocator().contains(range()))
m_page_directory->range_allocator().deallocate(range());
else
m_page_directory->identity_range_allocator().deallocate(range());
}
m_page_directory = nullptr;
}
void Region::set_page_directory(PageDirectory& page_directory)
{
VERIFY(!m_page_directory || m_page_directory == &page_directory);
VERIFY(s_mm_lock.own_lock());
m_page_directory = page_directory;
}
bool Region::map(PageDirectory& page_directory, ShouldFlushTLB should_flush_tlb)
{
ScopedSpinLock lock(s_mm_lock);
ScopedSpinLock page_lock(page_directory.get_lock());
// FIXME: Find a better place for this sanity check(?)
if (is_user() && !is_shared()) {
VERIFY(!vmobject().is_shared_inode());
}
set_page_directory(page_directory);
size_t page_index = 0;
while (page_index < page_count()) {
if (!map_individual_page_impl(page_index))
break;
++page_index;
}
if (page_index > 0) {
if (should_flush_tlb == ShouldFlushTLB::Yes)
MM.flush_tlb(m_page_directory, vaddr(), page_index);
return page_index == page_count();
}
return false;
}
void Region::remap()
{
VERIFY(m_page_directory);
map(*m_page_directory);
}
PageFaultResponse Region::handle_fault(const PageFault& fault, ScopedSpinLock<RecursiveSpinLock>& mm_lock)
{
auto page_index_in_region = page_index_from_address(fault.vaddr());
if (fault.type() == PageFault::Type::PageNotPresent) {
if (fault.is_read() && !is_readable()) {
dbgln("NP(non-readable) fault in Region({})[{}]", this, page_index_in_region);
return PageFaultResponse::ShouldCrash;
}
if (fault.is_write() && !is_writable()) {
dbgln("NP(non-writable) write fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
return PageFaultResponse::ShouldCrash;
}
if (vmobject().is_inode()) {
dbgln_if(PAGE_FAULT_DEBUG, "NP(inode) fault in Region({})[{}]", this, page_index_in_region);
return handle_inode_fault(page_index_in_region, mm_lock);
}
auto& page_slot = physical_page_slot(page_index_in_region);
if (page_slot->is_lazy_committed_page()) {
auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page(page_index_in_vmobject);
remap_vmobject_page(page_index_in_vmobject);
return PageFaultResponse::Continue;
}
#ifdef MAP_SHARED_ZERO_PAGE_LAZILY
if (fault.is_read()) {
page_slot = MM.shared_zero_page();
remap_vmobject_page(translate_to_vmobject_page(page_index_in_region));
return PageFaultResponse::Continue;
}
return handle_zero_fault(page_index_in_region);
#else
dbgln("BUG! Unexpected NP fault at {}", fault.vaddr());
return PageFaultResponse::ShouldCrash;
#endif
}
VERIFY(fault.type() == PageFault::Type::ProtectionViolation);
if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
dbgln_if(PAGE_FAULT_DEBUG, "PV(cow) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
auto* phys_page = physical_page(page_index_in_region);
if (phys_page->is_shared_zero_page() || phys_page->is_lazy_committed_page()) {
dbgln_if(PAGE_FAULT_DEBUG, "NP(zero) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
return handle_zero_fault(page_index_in_region);
}
return handle_cow_fault(page_index_in_region);
}
dbgln("PV(error) fault in Region({})[{}] at {}", this, page_index_in_region, fault.vaddr());
return PageFaultResponse::ShouldCrash;
}
PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(vmobject().is_anonymous());
LOCKER(vmobject().m_paging_lock);
auto& page_slot = physical_page_slot(page_index_in_region);
auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
if (!page_slot.is_null() && !page_slot->is_shared_zero_page() && !page_slot->is_lazy_committed_page()) {
#if PAGE_FAULT_DEBUG
dbgln("MM: zero_page() but page already present. Fine with me!");
#endif
if (!remap_vmobject_page(page_index_in_vmobject))
return PageFaultResponse::OutOfMemory;
return PageFaultResponse::Continue;
}
auto current_thread = Thread::current();
if (current_thread != nullptr)
current_thread->did_zero_fault();
if (page_slot->is_lazy_committed_page()) {
page_slot = static_cast<AnonymousVMObject&>(*m_vmobject).allocate_committed_page(page_index_in_vmobject);
dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED COMMITTED {}", page_slot->paddr());
} else {
page_slot = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
if (page_slot.is_null()) {
dmesgln("MM: handle_zero_fault was unable to allocate a physical page");
return PageFaultResponse::OutOfMemory;
}
dbgln_if(PAGE_FAULT_DEBUG, " >> ALLOCATED {}", page_slot->paddr());
}
if (!remap_vmobject_page(page_index_in_vmobject)) {
dmesgln("MM: handle_zero_fault was unable to allocate a page table to map {}", page_slot);
return PageFaultResponse::OutOfMemory;
}
return PageFaultResponse::Continue;
}
PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
{
VERIFY_INTERRUPTS_DISABLED();
auto current_thread = Thread::current();
if (current_thread)
current_thread->did_cow_fault();
if (!vmobject().is_anonymous())
return PageFaultResponse::ShouldCrash;
auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
auto response = reinterpret_cast<AnonymousVMObject&>(vmobject()).handle_cow_fault(page_index_in_vmobject, vaddr().offset(page_index_in_region * PAGE_SIZE));
if (!remap_vmobject_page(page_index_in_vmobject))
return PageFaultResponse::OutOfMemory;
return response;
}
PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region, ScopedSpinLock<RecursiveSpinLock>& mm_lock)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(vmobject().is_inode());
mm_lock.unlock();
VERIFY(!s_mm_lock.own_lock());
VERIFY(!g_scheduler_lock.own_lock());
LOCKER(vmobject().m_paging_lock);
mm_lock.lock();
VERIFY_INTERRUPTS_DISABLED();
auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
auto page_index_in_vmobject = translate_to_vmobject_page(page_index_in_region);
auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[page_index_in_vmobject];
dbgln_if(PAGE_FAULT_DEBUG, "Inode fault in {} page index: {}", name(), page_index_in_region);
if (!vmobject_physical_page_entry.is_null()) {
dbgln_if(PAGE_FAULT_DEBUG, "MM: page_in_from_inode() but page already present. Fine with me!");
if (!remap_vmobject_page(page_index_in_vmobject))
return PageFaultResponse::OutOfMemory;
return PageFaultResponse::Continue;
}
auto current_thread = Thread::current();
if (current_thread)
current_thread->did_inode_fault();
u8 page_buffer[PAGE_SIZE];
auto& inode = inode_vmobject.inode();
// Reading the page may block, so release the MM lock temporarily
mm_lock.unlock();
auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
auto nread = inode.read_bytes(page_index_in_vmobject * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
mm_lock.lock();
if (nread < 0) {
dmesgln("MM: handle_inode_fault had error ({}) while reading!", nread);
return PageFaultResponse::ShouldCrash;
}
if (nread < PAGE_SIZE) {
// If we read less than a page, zero out the rest to avoid leaking uninitialized data.
memset(page_buffer + nread, 0, PAGE_SIZE - nread);
}
vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (vmobject_physical_page_entry.is_null()) {
dmesgln("MM: handle_inode_fault was unable to allocate a physical page");
return PageFaultResponse::OutOfMemory;
}
u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
{
void* fault_at;
if (!safe_memcpy(dest_ptr, page_buffer, PAGE_SIZE, fault_at)) {
if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
dbgln(" >> inode fault: error copying data to {}/{}, failed at {}",
vmobject_physical_page_entry->paddr(),
VirtualAddress(dest_ptr),
VirtualAddress(fault_at));
else
VERIFY_NOT_REACHED();
}
}
MM.unquickmap_page();
remap_vmobject_page(page_index_in_vmobject);
return PageFaultResponse::Continue;
}
RefPtr<Process> Region::get_owner()
{
return m_owner.strong_ref();
}
}