ladybird/Kernel/VM/PurgeablePageRanges.cpp
Brian Gianforcaro 1682f0b760 Everything: Move to SPDX license identifiers in all files.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.

See: https://spdx.dev/resources/use/#identifiers

This was done with the `ambr` search and replace tool.

 ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
2021-04-22 11:22:27 +02:00

310 lines
11 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BinarySearch.h>
#include <AK/ScopeGuard.h>
#include <Kernel/Debug.h>
#include <Kernel/Process.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PhysicalPage.h>
#include <Kernel/VM/PurgeablePageRanges.h>
namespace AK {
template<>
struct Formatter<Kernel::VolatilePageRange> : Formatter<String> {
void format(FormatBuilder& builder, const Kernel::VolatilePageRange& value)
{
return Formatter<String>::format(builder, String::formatted("{{{} ({}) purged: {}}}", value.base, value.count, value.was_purged));
}
};
}
namespace Kernel {
static void dump_volatile_page_ranges(const Vector<VolatilePageRange>& ranges)
{
if constexpr (VOLATILE_PAGE_RANGES_DEBUG) {
for (size_t i = 0; i < ranges.size(); i++) {
dbgln("[{}] {}", i, ranges[i]);
}
}
}
void VolatilePageRanges::add_unchecked(const VolatilePageRange& range)
{
auto add_range = m_total_range.intersected(range);
if (add_range.is_empty())
return;
m_ranges.append(range);
}
bool VolatilePageRanges::add(const VolatilePageRange& range)
{
auto add_range = m_total_range.intersected(range);
if (add_range.is_empty())
return false;
add_range.was_purged = range.was_purged;
if constexpr (VOLATILE_PAGE_RANGES_DEBUG) {
dbgln("ADD {} (total range: {}) -->", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
ScopeGuard debug_guard([&]() {
dbgln("After adding {} (total range: {})", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
dbgln("<-- ADD {} (total range: {})", range, m_total_range);
});
}
size_t nearby_index = 0;
auto* existing_range = binary_search(
m_ranges.span(), add_range, &nearby_index, [](auto& a, auto& b) {
if (a.intersects_or_adjacent(b))
return 0;
return (signed)(a.base - (b.base + b.count - 1));
});
size_t inserted_index = 0;
if (existing_range) {
if (*existing_range == add_range)
return false;
if (existing_range->was_purged != add_range.was_purged) {
// Found an intersecting or adjacent range, but the purge flag
// doesn't match. Subtract what we're adding from it, and
existing_range->subtract_intersecting(add_range);
if (existing_range->is_empty()) {
*existing_range = add_range;
} else {
m_ranges.insert(++nearby_index, add_range);
existing_range = &m_ranges[nearby_index];
}
} else {
// Found an intersecting or adjacent range that can be merged
existing_range->combine_intersecting_or_adjacent(add_range);
}
inserted_index = nearby_index;
} else {
// Insert into the sorted list
m_ranges.insert_before_matching(
VolatilePageRange(add_range), [&](auto& entry) {
return entry.base >= add_range.base + add_range.count;
},
nearby_index, &inserted_index);
existing_range = &m_ranges[inserted_index];
}
// See if we can merge any of the following ranges
inserted_index++;
while (inserted_index < m_ranges.size()) {
auto& next_range = m_ranges[inserted_index];
if (!next_range.intersects_or_adjacent(*existing_range))
break;
if (next_range.was_purged != existing_range->was_purged) {
// The purged flag of following range is not the same.
// Subtract the added/combined range from it
next_range.subtract_intersecting(*existing_range);
if (next_range.is_empty())
m_ranges.remove(inserted_index);
} else {
existing_range->combine_intersecting_or_adjacent(next_range);
m_ranges.remove(inserted_index);
}
}
return true;
}
bool VolatilePageRanges::remove(const VolatilePageRange& range, bool& was_purged)
{
auto remove_range = m_total_range.intersected(range);
if (remove_range.is_empty())
return false;
if constexpr (VOLATILE_PAGE_RANGES_DEBUG) {
dbgln("REMOVE {} (total range: {}) -->", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
ScopeGuard debug_guard([&]() {
dbgln("After removing {} (total range: {})", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
dbgln("<-- REMOVE {} (total range: {}) was_purged: {}", range, m_total_range, was_purged);
});
}
size_t nearby_index = 0;
auto* existing_range = binary_search(
m_ranges.span(), remove_range, &nearby_index, [](auto& a, auto& b) {
if (a.intersects(b))
return 0;
return (signed)(a.base - (b.base + b.count - 1));
});
if (!existing_range)
return false;
was_purged = existing_range->was_purged;
if (existing_range->range_equals(remove_range)) {
m_ranges.remove(nearby_index);
} else {
// See if we need to remove any of the following ranges
VERIFY(existing_range == &m_ranges[nearby_index]); // sanity check
while (nearby_index < m_ranges.size()) {
existing_range = &m_ranges[nearby_index];
if (!existing_range->intersects(range))
break;
was_purged |= existing_range->was_purged;
existing_range->subtract_intersecting(remove_range);
if (existing_range->is_empty()) {
m_ranges.remove(nearby_index);
break;
}
}
}
return true;
}
bool VolatilePageRanges::intersects(const VolatilePageRange& range) const
{
auto* existing_range = binary_search(
m_ranges.span(), range, nullptr, [](auto& a, auto& b) {
if (a.intersects(b))
return 0;
return (signed)(a.base - (b.base + b.count - 1));
});
return existing_range != nullptr;
}
PurgeablePageRanges::PurgeablePageRanges(const VMObject& vmobject)
: m_volatile_ranges({ 0, vmobject.is_anonymous() ? vmobject.page_count() : 0 })
{
}
bool PurgeablePageRanges::add_volatile_range(const VolatilePageRange& range)
{
if (range.is_empty())
return false;
// Since we may need to call into AnonymousVMObject we need to acquire
// its lock as well, and acquire it first. This is important so that
// we don't deadlock when a page fault (e.g. on another processor)
// happens that is meant to lazy-allocate a committed page. It would
// call into AnonymousVMObject::range_made_volatile, which then would
// also call into this object and need to acquire m_lock. By acquiring
// the vmobject lock first in both cases, we avoid deadlocking.
// We can access m_vmobject without any locks for that purpose because
// add_volatile_range and remove_volatile_range can only be called
// by same object that calls set_vmobject.
ScopedSpinLock vmobject_lock(m_vmobject->m_lock);
ScopedSpinLock lock(m_volatile_ranges_lock);
bool added = m_volatile_ranges.add(range);
if (added)
m_vmobject->range_made_volatile(range);
return added;
}
auto PurgeablePageRanges::remove_volatile_range(const VolatilePageRange& range, bool& was_purged) -> RemoveVolatileError
{
if (range.is_empty()) {
was_purged = false;
return RemoveVolatileError::Success;
}
ScopedSpinLock vmobject_lock(m_vmobject->m_lock); // see comment in add_volatile_range
ScopedSpinLock lock(m_volatile_ranges_lock);
VERIFY(m_vmobject);
// Before we actually remove this range, we need to check if we need
// to commit any pages, which may fail. If it fails, we don't actually
// want to make any modifications. COW pages are already accounted for
// in m_shared_committed_cow_pages
size_t need_commit_pages = 0;
m_volatile_ranges.for_each_intersecting_range(range, [&](const VolatilePageRange& intersected_range) {
need_commit_pages += m_vmobject->count_needed_commit_pages_for_nonvolatile_range(intersected_range);
return IterationDecision::Continue;
});
if (need_commit_pages > 0) {
// See if we can grab enough pages for what we're marking non-volatile
if (!MM.commit_user_physical_pages(need_commit_pages))
return RemoveVolatileError::OutOfMemory;
// Now that we are committed to these pages, mark them for lazy-commit allocation
auto pages_to_mark = need_commit_pages;
m_volatile_ranges.for_each_intersecting_range(range, [&](const VolatilePageRange& intersected_range) {
auto pages_marked = m_vmobject->mark_committed_pages_for_nonvolatile_range(intersected_range, pages_to_mark);
pages_to_mark -= pages_marked;
return IterationDecision::Continue;
});
}
// Now actually remove the range
if (m_volatile_ranges.remove(range, was_purged)) {
m_vmobject->range_made_nonvolatile(range);
return RemoveVolatileError::Success;
}
VERIFY(need_commit_pages == 0); // We should have not touched anything
return RemoveVolatileError::SuccessNoChange;
}
bool PurgeablePageRanges::is_volatile_range(const VolatilePageRange& range) const
{
if (range.is_empty())
return false;
ScopedSpinLock lock(m_volatile_ranges_lock);
return m_volatile_ranges.intersects(range);
}
bool PurgeablePageRanges::is_volatile(size_t index) const
{
ScopedSpinLock lock(m_volatile_ranges_lock);
return m_volatile_ranges.contains(index);
}
void PurgeablePageRanges::set_was_purged(const VolatilePageRange& range)
{
ScopedSpinLock lock(m_volatile_ranges_lock);
m_volatile_ranges.add({ range.base, range.count, true });
}
void PurgeablePageRanges::set_vmobject(AnonymousVMObject* vmobject)
{
// No lock needed here
if (vmobject) {
VERIFY(!m_vmobject);
m_vmobject = vmobject;
} else {
VERIFY(m_vmobject);
m_vmobject = nullptr;
}
}
CommittedCowPages::CommittedCowPages(size_t committed_pages)
: m_committed_pages(committed_pages)
{
}
CommittedCowPages::~CommittedCowPages()
{
// Return unused committed pages
if (m_committed_pages > 0)
MM.uncommit_user_physical_pages(m_committed_pages);
}
NonnullRefPtr<PhysicalPage> CommittedCowPages::allocate_one()
{
VERIFY(m_committed_pages > 0);
m_committed_pages--;
return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
}
bool CommittedCowPages::return_one()
{
VERIFY(m_committed_pages > 0);
m_committed_pages--;
MM.uncommit_user_physical_pages(1);
return m_committed_pages == 0;
}
}