ladybird/Userland/Libraries/LibJS/Parser.cpp

3319 lines
138 KiB
C++

/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Parser.h"
#include <AK/Array.h>
#include <AK/CharacterTypes.h>
#include <AK/HashTable.h>
#include <AK/ScopeGuard.h>
#include <AK/StdLibExtras.h>
#include <AK/TemporaryChange.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibRegex/Regex.h>
namespace JS {
static bool statement_is_use_strict_directive(NonnullRefPtr<Statement> statement)
{
if (!is<ExpressionStatement>(*statement))
return false;
auto& expression_statement = static_cast<ExpressionStatement&>(*statement);
auto& expression = expression_statement.expression();
if (!is<StringLiteral>(expression))
return false;
return static_cast<const StringLiteral&>(expression).is_use_strict_directive();
}
class ScopePusher {
public:
enum Type {
Var = 1,
Let = 2,
};
ScopePusher(Parser& parser, unsigned mask, Parser::Scope::Type scope_type)
: m_parser(parser)
, m_mask(mask)
{
if (m_mask & Var)
m_parser.m_state.var_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
if (m_mask & Let)
m_parser.m_state.let_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
m_parser.m_state.current_scope = create<Parser::Scope>(scope_type, m_parser.m_state.current_scope);
}
~ScopePusher()
{
if (m_mask & Var)
m_parser.m_state.var_scopes.take_last();
if (m_mask & Let)
m_parser.m_state.let_scopes.take_last();
auto& popped = m_parser.m_state.current_scope;
// Manual clear required to resolve circular references
popped->hoisted_function_declarations.clear();
m_parser.m_state.current_scope = popped->parent;
}
void add_to_scope_node(NonnullRefPtr<ScopeNode> scope_node)
{
if (m_mask & Var)
scope_node->add_variables(m_parser.m_state.var_scopes.last());
if (m_mask & Let)
scope_node->add_variables(m_parser.m_state.let_scopes.last());
auto& scope = m_parser.m_state.current_scope;
scope_node->add_functions(scope->function_declarations);
for (auto& hoistable_function : scope->hoisted_function_declarations) {
if (is_hoistable(hoistable_function)) {
scope_node->add_hoisted_function(hoistable_function.declaration);
}
}
}
static bool is_hoistable(Parser::Scope::HoistableDeclaration& declaration)
{
auto& name = declaration.declaration->name();
// See if we find any conflicting lexical declaration on the way up
for (RefPtr<Parser::Scope> scope = declaration.scope; !scope.is_null(); scope = scope->parent) {
if (scope->lexical_declarations.contains(name)) {
return false;
}
}
return true;
}
Parser& m_parser;
unsigned m_mask { 0 };
};
class OperatorPrecedenceTable {
public:
constexpr OperatorPrecedenceTable()
: m_token_precedence()
{
for (size_t i = 0; i < array_size(m_operator_precedence); ++i) {
auto& op = m_operator_precedence[i];
m_token_precedence[static_cast<size_t>(op.token)] = op.precedence;
}
}
constexpr int get(TokenType token) const
{
int p = m_token_precedence[static_cast<size_t>(token)];
if (p == 0) {
warnln("Internal Error: No precedence for operator {}", Token::name(token));
VERIFY_NOT_REACHED();
return -1;
}
return p;
}
private:
int m_token_precedence[cs_num_of_js_tokens];
struct OperatorPrecedence {
TokenType token;
int precedence;
};
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
static constexpr const OperatorPrecedence m_operator_precedence[] = {
{ TokenType::Period, 20 },
{ TokenType::BracketOpen, 20 },
{ TokenType::ParenOpen, 20 },
{ TokenType::QuestionMarkPeriod, 20 },
{ TokenType::New, 19 },
{ TokenType::PlusPlus, 18 },
{ TokenType::MinusMinus, 18 },
{ TokenType::ExclamationMark, 17 },
{ TokenType::Tilde, 17 },
{ TokenType::Typeof, 17 },
{ TokenType::Void, 17 },
{ TokenType::Delete, 17 },
{ TokenType::Await, 17 },
{ TokenType::DoubleAsterisk, 16 },
{ TokenType::Asterisk, 15 },
{ TokenType::Slash, 15 },
{ TokenType::Percent, 15 },
{ TokenType::Plus, 14 },
{ TokenType::Minus, 14 },
{ TokenType::ShiftLeft, 13 },
{ TokenType::ShiftRight, 13 },
{ TokenType::UnsignedShiftRight, 13 },
{ TokenType::LessThan, 12 },
{ TokenType::LessThanEquals, 12 },
{ TokenType::GreaterThan, 12 },
{ TokenType::GreaterThanEquals, 12 },
{ TokenType::In, 12 },
{ TokenType::Instanceof, 12 },
{ TokenType::EqualsEquals, 11 },
{ TokenType::ExclamationMarkEquals, 11 },
{ TokenType::EqualsEqualsEquals, 11 },
{ TokenType::ExclamationMarkEqualsEquals, 11 },
{ TokenType::Ampersand, 10 },
{ TokenType::Caret, 9 },
{ TokenType::Pipe, 8 },
{ TokenType::DoubleQuestionMark, 7 },
{ TokenType::DoubleAmpersand, 6 },
{ TokenType::DoublePipe, 5 },
{ TokenType::QuestionMark, 4 },
{ TokenType::Equals, 3 },
{ TokenType::PlusEquals, 3 },
{ TokenType::MinusEquals, 3 },
{ TokenType::DoubleAsteriskEquals, 3 },
{ TokenType::AsteriskEquals, 3 },
{ TokenType::SlashEquals, 3 },
{ TokenType::PercentEquals, 3 },
{ TokenType::ShiftLeftEquals, 3 },
{ TokenType::ShiftRightEquals, 3 },
{ TokenType::UnsignedShiftRightEquals, 3 },
{ TokenType::AmpersandEquals, 3 },
{ TokenType::CaretEquals, 3 },
{ TokenType::PipeEquals, 3 },
{ TokenType::DoubleAmpersandEquals, 3 },
{ TokenType::DoublePipeEquals, 3 },
{ TokenType::DoubleQuestionMarkEquals, 3 },
{ TokenType::Yield, 2 },
{ TokenType::Comma, 1 },
};
};
constexpr OperatorPrecedenceTable g_operator_precedence;
Parser::ParserState::ParserState(Lexer l, Program::Type program_type)
: lexer(move(l))
, current_token(TokenType::Invalid, {}, {}, {}, {}, 0, 0, 0)
{
if (program_type == Program::Type::Module)
lexer.disallow_html_comments();
current_token = lexer.next();
}
Parser::Scope::Scope(Parser::Scope::Type type, RefPtr<Parser::Scope> parent_scope)
: type(type)
, parent(move(parent_scope))
{
}
RefPtr<Parser::Scope> Parser::Scope::get_current_function_scope()
{
if (this->type == Parser::Scope::Function) {
return *this;
}
auto result = this->parent;
while (result->type != Parser::Scope::Function) {
result = result->parent;
}
return result;
}
Parser::Parser(Lexer lexer, Program::Type program_type)
: m_state(move(lexer), program_type)
, m_program_type(program_type)
{
}
Associativity Parser::operator_associativity(TokenType type) const
{
switch (type) {
case TokenType::Period:
case TokenType::BracketOpen:
case TokenType::ParenOpen:
case TokenType::QuestionMarkPeriod:
case TokenType::Asterisk:
case TokenType::Slash:
case TokenType::Percent:
case TokenType::Plus:
case TokenType::Minus:
case TokenType::ShiftLeft:
case TokenType::ShiftRight:
case TokenType::UnsignedShiftRight:
case TokenType::LessThan:
case TokenType::LessThanEquals:
case TokenType::GreaterThan:
case TokenType::GreaterThanEquals:
case TokenType::In:
case TokenType::Instanceof:
case TokenType::EqualsEquals:
case TokenType::ExclamationMarkEquals:
case TokenType::EqualsEqualsEquals:
case TokenType::ExclamationMarkEqualsEquals:
case TokenType::Typeof:
case TokenType::Void:
case TokenType::Delete:
case TokenType::Ampersand:
case TokenType::Caret:
case TokenType::Pipe:
case TokenType::DoubleQuestionMark:
case TokenType::DoubleAmpersand:
case TokenType::DoublePipe:
case TokenType::Comma:
return Associativity::Left;
default:
return Associativity::Right;
}
}
NonnullRefPtr<Program> Parser::parse_program(bool starts_in_strict_mode)
{
auto rule_start = push_start();
ScopePusher scope(*this, ScopePusher::Var | ScopePusher::Let, Scope::Function);
auto program = adopt_ref(*new Program({ m_filename, rule_start.position(), position() }, m_program_type));
if (starts_in_strict_mode || m_program_type == Program::Type::Module) {
program->set_strict_mode();
m_state.strict_mode = true;
}
bool parsing_directives = true;
while (!done()) {
if (match_declaration()) {
program->append(parse_declaration());
parsing_directives = false;
} else if (match_statement()) {
auto statement = parse_statement(AllowLabelledFunction::Yes);
program->append(statement);
if (statement_is_use_strict_directive(statement)) {
if (parsing_directives) {
program->set_strict_mode();
m_state.strict_mode = true;
}
if (m_state.string_legacy_octal_escape_sequence_in_scope)
syntax_error("Octal escape sequence in string literal not allowed in strict mode");
}
if (parsing_directives && is<ExpressionStatement>(*statement)) {
auto& expression_statement = static_cast<ExpressionStatement&>(*statement);
auto& expression = expression_statement.expression();
parsing_directives = is<StringLiteral>(expression);
} else {
parsing_directives = false;
}
} else if (match_export_or_import()) {
VERIFY(m_state.current_token.type() == TokenType::Export || m_state.current_token.type() == TokenType::Import);
if (m_state.current_token.type() == TokenType::Export)
program->append_export(parse_export_statement(*program));
else
program->append_import(parse_import_statement(*program));
parsing_directives = false;
} else {
expected("statement or declaration");
consume();
parsing_directives = false;
}
}
if (m_state.var_scopes.size() == 1) {
scope.add_to_scope_node(program);
} else {
syntax_error("Unclosed lexical_environment");
}
program->source_range().end = position();
return program;
}
NonnullRefPtr<Declaration> Parser::parse_declaration()
{
auto rule_start = push_start();
switch (m_state.current_token.type()) {
case TokenType::Class:
return parse_class_declaration();
case TokenType::Function: {
auto declaration = parse_function_node<FunctionDeclaration>();
m_state.current_scope->function_declarations.append(declaration);
auto hoisting_target = m_state.current_scope->get_current_function_scope();
hoisting_target->hoisted_function_declarations.append({ declaration, *m_state.current_scope });
return declaration;
}
case TokenType::Let:
case TokenType::Const:
return parse_variable_declaration();
default:
expected("declaration");
consume();
return create_ast_node<ErrorDeclaration>({ m_state.current_token.filename(), rule_start.position(), position() });
}
}
NonnullRefPtr<Statement> Parser::parse_statement(AllowLabelledFunction allow_labelled_function)
{
auto rule_start = push_start();
switch (m_state.current_token.type()) {
case TokenType::CurlyOpen:
return parse_block_statement();
case TokenType::Return:
return parse_return_statement();
case TokenType::Var:
return parse_variable_declaration();
case TokenType::For:
return parse_for_statement();
case TokenType::If:
return parse_if_statement();
case TokenType::Throw:
return parse_throw_statement();
case TokenType::Try:
return parse_try_statement();
case TokenType::Break:
return parse_break_statement();
case TokenType::Continue:
return parse_continue_statement();
case TokenType::Switch:
return parse_switch_statement();
case TokenType::Do:
return parse_do_while_statement();
case TokenType::While:
return parse_while_statement();
case TokenType::With:
if (m_state.strict_mode)
syntax_error("'with' statement not allowed in strict mode");
return parse_with_statement();
case TokenType::Debugger:
return parse_debugger_statement();
case TokenType::Semicolon:
consume();
return create_ast_node<EmptyStatement>({ m_state.current_token.filename(), rule_start.position(), position() });
case TokenType::Slash:
case TokenType::SlashEquals:
m_state.current_token = m_state.lexer.force_slash_as_regex();
[[fallthrough]];
default:
if (match_identifier_name()) {
auto result = try_parse_labelled_statement(allow_labelled_function);
if (!result.is_null())
return result.release_nonnull();
}
if (match_expression()) {
if (match(TokenType::Function))
syntax_error("Function declaration not allowed in single-statement context");
auto expr = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ExpressionStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expr));
}
expected("statement");
consume();
return create_ast_node<ErrorStatement>({ m_state.current_token.filename(), rule_start.position(), position() });
}
}
static constexpr AK::Array<StringView, 9> strict_reserved_words = { "implements", "interface", "let", "package", "private", "protected", "public", "static", "yield" };
static bool is_strict_reserved_word(StringView str)
{
return any_of(strict_reserved_words, [&str](StringView const& word) {
return word == str;
});
}
RefPtr<FunctionExpression> Parser::try_parse_arrow_function_expression(bool expect_parens)
{
save_state();
auto rule_start = push_start();
ArmedScopeGuard state_rollback_guard = [&] {
load_state();
};
Vector<FunctionNode::Parameter> parameters;
i32 function_length = -1;
if (expect_parens) {
// We have parens around the function parameters and can re-use the same parsing
// logic used for regular functions: multiple parameters, default values, rest
// parameter, maybe a trailing comma. If we have a new syntax error afterwards we
// check if it's about a wrong token (something like duplicate parameter name must
// not abort), know parsing failed and rollback the parser state.
auto previous_syntax_errors = m_state.errors.size();
parameters = parse_formal_parameters(function_length, FunctionNodeParseOptions::IsArrowFunction);
if (m_state.errors.size() > previous_syntax_errors && m_state.errors[previous_syntax_errors].message.starts_with("Unexpected token"))
return nullptr;
if (!match(TokenType::ParenClose))
return nullptr;
consume();
} else {
// No parens - this must be an identifier followed by arrow. That's it.
if (!match_identifier() && !match(TokenType::Yield) && !match(TokenType::Await))
return nullptr;
auto token = consume_identifier_reference();
if (m_state.strict_mode && token.value().is_one_of("arguments"sv, "eval"sv))
syntax_error("BindingIdentifier may not be 'arguments' or 'eval' in strict mode");
parameters.append({ FlyString { token.value() }, {} });
}
// If there's a newline between the closing paren and arrow it's not a valid arrow function,
// ASI should kick in instead (it'll then fail with "Unexpected token Arrow")
if (m_state.current_token.trivia_contains_line_terminator())
return nullptr;
if (!match(TokenType::Arrow))
return nullptr;
consume();
if (function_length == -1)
function_length = parameters.size();
m_state.function_parameters.append(parameters);
auto old_labels_in_scope = move(m_state.labels_in_scope);
ScopeGuard guard([&]() {
m_state.labels_in_scope = move(old_labels_in_scope);
});
bool is_strict = false;
auto function_body_result = [&]() -> RefPtr<BlockStatement> {
TemporaryChange change(m_state.in_arrow_function_context, true);
if (match(TokenType::CurlyOpen)) {
// Parse a function body with statements
ScopePusher scope(*this, ScopePusher::Var, Scope::Function);
bool has_binding = any_of(parameters, [](FunctionNode::Parameter const& parameter) {
return parameter.binding.has<NonnullRefPtr<BindingPattern>>();
});
auto body = parse_block_statement(is_strict, has_binding);
scope.add_to_scope_node(body);
return body;
}
if (match_expression()) {
// Parse a function body which returns a single expression
// FIXME: We synthesize a block with a return statement
// for arrow function bodies which are a single expression.
// Esprima generates a single "ArrowFunctionExpression"
// with a "body" property.
auto return_expression = parse_expression(2);
auto return_block = create_ast_node<BlockStatement>({ m_state.current_token.filename(), rule_start.position(), position() });
return_block->append<ReturnStatement>({ m_filename, rule_start.position(), position() }, move(return_expression));
return return_block;
}
// Invalid arrow function body
return nullptr;
}();
m_state.function_parameters.take_last();
if (function_body_result.is_null())
return nullptr;
state_rollback_guard.disarm();
discard_saved_state();
auto body = function_body_result.release_nonnull();
if (is_strict) {
for (auto& parameter : parameters) {
parameter.binding.visit(
[&](FlyString const& name) {
check_identifier_name_for_assignment_validity(name, true);
},
[&](auto const&) {});
}
}
return create_ast_node<FunctionExpression>(
{ m_state.current_token.filename(), rule_start.position(), position() }, "", move(body),
move(parameters), function_length, FunctionKind::Regular, is_strict, true);
}
RefPtr<Statement> Parser::try_parse_labelled_statement(AllowLabelledFunction allow_function)
{
save_state();
auto rule_start = push_start();
ArmedScopeGuard state_rollback_guard = [&] {
load_state();
};
if (match(TokenType::Yield) && (m_state.strict_mode || m_state.in_generator_function_context)) {
syntax_error("'yield' label not allowed in this context");
return {};
}
auto identifier = consume_identifier_reference().value();
if (!match(TokenType::Colon))
return {};
consume(TokenType::Colon);
if (!match_statement())
return {};
if (match(TokenType::Function) && (allow_function == AllowLabelledFunction::No || m_state.strict_mode)) {
syntax_error("Not allowed to declare a function here");
return {};
}
if (m_state.labels_in_scope.contains(identifier))
syntax_error(String::formatted("Label '{}' has already been declared", identifier));
m_state.labels_in_scope.set(identifier);
RefPtr<Statement> labelled_statement;
if (match(TokenType::Function)) {
auto function_declaration = parse_function_node<FunctionDeclaration>();
m_state.current_scope->function_declarations.append(function_declaration);
auto hoisting_target = m_state.current_scope->get_current_function_scope();
hoisting_target->hoisted_function_declarations.append({ function_declaration, *m_state.current_scope });
if (function_declaration->kind() == FunctionKind::Generator)
syntax_error("Generator functions cannot be defined in labelled statements");
labelled_statement = move(function_declaration);
} else {
labelled_statement = parse_statement();
}
m_state.labels_in_scope.remove(identifier);
labelled_statement->set_label(identifier);
state_rollback_guard.disarm();
discard_saved_state();
return labelled_statement.release_nonnull();
}
RefPtr<MetaProperty> Parser::try_parse_new_target_expression()
{
save_state();
auto rule_start = push_start();
ArmedScopeGuard state_rollback_guard = [&] {
load_state();
};
consume(TokenType::New);
if (!match(TokenType::Period))
return {};
consume();
if (!match(TokenType::Identifier))
return {};
if (consume().value() != "target")
return {};
state_rollback_guard.disarm();
discard_saved_state();
return create_ast_node<MetaProperty>({ m_state.current_token.filename(), rule_start.position(), position() }, MetaProperty::Type::NewTarget);
}
NonnullRefPtr<ClassDeclaration> Parser::parse_class_declaration()
{
auto rule_start = push_start();
return create_ast_node<ClassDeclaration>({ m_state.current_token.filename(), rule_start.position(), position() }, parse_class_expression(true));
}
NonnullRefPtr<ClassExpression> Parser::parse_class_expression(bool expect_class_name)
{
auto rule_start = push_start();
// Classes are always in strict mode.
TemporaryChange strict_mode_rollback(m_state.strict_mode, true);
consume(TokenType::Class);
NonnullRefPtrVector<ClassMethod> methods;
RefPtr<Expression> super_class;
RefPtr<FunctionExpression> constructor;
String class_name = expect_class_name || match_identifier() || match(TokenType::Yield) || match(TokenType::Await)
? consume_identifier_reference().value().to_string()
: "";
check_identifier_name_for_assignment_validity(class_name, true);
if (match(TokenType::Extends)) {
consume();
auto [expression, should_continue_parsing] = parse_primary_expression();
// Basically a (much) simplified parse_secondary_expression().
for (;;) {
if (match(TokenType::TemplateLiteralStart)) {
auto template_literal = parse_template_literal(true);
expression = create_ast_node<TaggedTemplateLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expression), move(template_literal));
continue;
}
if (match(TokenType::BracketOpen) || match(TokenType::Period) || match(TokenType::ParenOpen)) {
auto precedence = g_operator_precedence.get(m_state.current_token.type());
expression = parse_secondary_expression(move(expression), precedence);
continue;
}
break;
}
super_class = move(expression);
(void)should_continue_parsing;
}
consume(TokenType::CurlyOpen);
while (!done() && !match(TokenType::CurlyClose)) {
RefPtr<Expression> property_key;
bool is_static = false;
bool is_constructor = false;
bool is_generator = false;
auto method_kind = ClassMethod::Kind::Method;
if (match(TokenType::Semicolon)) {
consume();
continue;
}
if (match(TokenType::Asterisk)) {
consume();
is_generator = true;
}
if (match_property_key()) {
StringView name;
if (!is_generator && m_state.current_token.value() == "static"sv) {
if (match(TokenType::Identifier)) {
consume();
is_static = true;
if (match(TokenType::Asterisk)) {
consume();
is_generator = true;
}
}
}
if (match(TokenType::Identifier)) {
auto identifier_name = m_state.current_token.value();
if (identifier_name == "get") {
method_kind = ClassMethod::Kind::Getter;
consume();
} else if (identifier_name == "set") {
method_kind = ClassMethod::Kind::Setter;
consume();
}
}
if (match_property_key()) {
switch (m_state.current_token.type()) {
case TokenType::Identifier:
name = consume().value();
property_key = create_ast_node<StringLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, name);
break;
case TokenType::StringLiteral: {
auto string_literal = parse_string_literal(consume());
name = string_literal->value();
property_key = move(string_literal);
break;
}
default:
property_key = parse_property_key();
break;
}
//https://tc39.es/ecma262/#sec-class-definitions-static-semantics-early-errors
// ClassElement : static MethodDefinition
// It is a Syntax Error if PropName of MethodDefinition is "prototype".
if (is_static && name == "prototype"sv)
syntax_error("Classes may not have a static property named 'prototype'");
} else if (match(TokenType::ParenOpen) && (is_static || method_kind != ClassMethod::Kind::Method)) {
switch (method_kind) {
case ClassMethod::Kind::Method:
VERIFY(is_static);
name = "static";
is_static = false;
break;
case ClassMethod::Kind::Getter:
name = "get";
method_kind = ClassMethod::Kind::Method;
break;
case ClassMethod::Kind::Setter:
name = "set";
method_kind = ClassMethod::Kind::Method;
break;
}
property_key = create_ast_node<StringLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, name);
} else {
expected("property key");
}
// Constructor may be a StringLiteral or an Identifier.
if (!is_static && name == "constructor") {
if (method_kind != ClassMethod::Kind::Method)
syntax_error("Class constructor may not be an accessor");
if (!constructor.is_null())
syntax_error("Classes may not have more than one constructor");
if (is_generator)
syntax_error("Class constructor may not be a generator");
is_constructor = true;
}
}
if (match(TokenType::ParenOpen)) {
u8 parse_options = FunctionNodeParseOptions::AllowSuperPropertyLookup;
if (!super_class.is_null() && !is_static && is_constructor)
parse_options |= FunctionNodeParseOptions::AllowSuperConstructorCall;
if (method_kind == ClassMethod::Kind::Getter)
parse_options |= FunctionNodeParseOptions::IsGetterFunction;
if (method_kind == ClassMethod::Kind::Setter)
parse_options |= FunctionNodeParseOptions::IsSetterFunction;
if (is_generator)
parse_options |= FunctionNodeParseOptions::IsGeneratorFunction;
auto function = parse_function_node<FunctionExpression>(parse_options);
if (is_constructor) {
constructor = move(function);
} else if (!property_key.is_null()) {
methods.append(create_ast_node<ClassMethod>({ m_state.current_token.filename(), rule_start.position(), position() }, property_key.release_nonnull(), move(function), method_kind, is_static));
} else {
syntax_error("No key for class method");
}
} else {
expected("ParenOpen");
consume();
}
}
consume(TokenType::CurlyClose);
if (constructor.is_null()) {
auto constructor_body = create_ast_node<BlockStatement>({ m_state.current_token.filename(), rule_start.position(), position() });
if (!super_class.is_null()) {
// Set constructor to the result of parsing the source text
// constructor(... args){ super (...args);}
auto super_call = create_ast_node<SuperCall>(
{ m_state.current_token.filename(), rule_start.position(), position() },
Vector { CallExpression::Argument { create_ast_node<Identifier>({ m_state.current_token.filename(), rule_start.position(), position() }, "args"), true } });
constructor_body->append(create_ast_node<ExpressionStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(super_call)));
constructor_body->add_variables(m_state.var_scopes.last());
constructor = create_ast_node<FunctionExpression>(
{ m_state.current_token.filename(), rule_start.position(), position() }, class_name, move(constructor_body),
Vector { FunctionNode::Parameter { FlyString { "args" }, nullptr, true } }, 0, FunctionKind::Regular, true);
} else {
constructor = create_ast_node<FunctionExpression>(
{ m_state.current_token.filename(), rule_start.position(), position() }, class_name, move(constructor_body),
Vector<FunctionNode::Parameter> {}, 0, FunctionKind::Regular, true);
}
}
return create_ast_node<ClassExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(class_name), move(constructor), move(super_class), move(methods));
}
Parser::PrimaryExpressionParseResult Parser::parse_primary_expression()
{
auto rule_start = push_start();
if (match_unary_prefixed_expression())
return { parse_unary_prefixed_expression() };
switch (m_state.current_token.type()) {
case TokenType::ParenOpen: {
auto paren_position = position();
consume(TokenType::ParenOpen);
if ((match(TokenType::ParenClose) || match_identifier() || match(TokenType::TripleDot) || match(TokenType::CurlyOpen) || match(TokenType::BracketOpen))
&& !try_parse_arrow_function_expression_failed_at_position(paren_position)) {
auto arrow_function_result = try_parse_arrow_function_expression(true);
if (!arrow_function_result.is_null())
return { arrow_function_result.release_nonnull(), false };
set_try_parse_arrow_function_expression_failed_at_position(paren_position, true);
}
auto expression = parse_expression(0);
consume(TokenType::ParenClose);
if (is<FunctionExpression>(*expression)) {
auto& function = static_cast<FunctionExpression&>(*expression);
function.set_cannot_auto_rename();
if (function.kind() == FunctionKind::Generator && function.name() == "yield"sv)
syntax_error("function is not allowed to be called 'yield' in this context", function.source_range().start);
}
return { move(expression) };
}
case TokenType::This:
consume();
return { create_ast_node<ThisExpression>({ m_state.current_token.filename(), rule_start.position(), position() }) };
case TokenType::Class:
return { parse_class_expression(false) };
case TokenType::Super:
consume();
if (!m_state.allow_super_property_lookup)
syntax_error("'super' keyword unexpected here");
return { create_ast_node<SuperExpression>({ m_state.current_token.filename(), rule_start.position(), position() }) };
case TokenType::Identifier: {
read_as_identifier:;
if (!try_parse_arrow_function_expression_failed_at_position(position())) {
auto arrow_function_result = try_parse_arrow_function_expression(false);
if (!arrow_function_result.is_null())
return { arrow_function_result.release_nonnull(), false };
set_try_parse_arrow_function_expression_failed_at_position(position(), true);
}
auto string = consume().value();
// This could be 'eval' or 'arguments' and thus needs a custom check (`eval[1] = true`)
if (m_state.strict_mode && (string == "let" || is_strict_reserved_word(string)))
syntax_error(String::formatted("Identifier must not be a reserved word in strict mode ('{}')", string));
return { create_ast_node<Identifier>({ m_state.current_token.filename(), rule_start.position(), position() }, string) };
}
case TokenType::NumericLiteral:
return { create_ast_node<NumericLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, consume_and_validate_numeric_literal().double_value()) };
case TokenType::BigIntLiteral:
return { create_ast_node<BigIntLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, consume().value()) };
case TokenType::BoolLiteral:
return { create_ast_node<BooleanLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, consume().bool_value()) };
case TokenType::StringLiteral:
return { parse_string_literal(consume()) };
case TokenType::NullLiteral:
consume();
return { create_ast_node<NullLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }) };
case TokenType::CurlyOpen:
return { parse_object_expression() };
case TokenType::Function:
return { parse_function_node<FunctionExpression>() };
case TokenType::BracketOpen:
return { parse_array_expression() };
case TokenType::RegexLiteral:
return { parse_regexp_literal() };
case TokenType::TemplateLiteralStart:
return { parse_template_literal(false) };
case TokenType::New: {
auto new_start = position();
auto new_target_result = try_parse_new_target_expression();
if (!new_target_result.is_null()) {
if (!m_state.in_function_context)
syntax_error("'new.target' not allowed outside of a function", new_start);
return { new_target_result.release_nonnull() };
}
return { parse_new_expression() };
}
case TokenType::Yield:
if (!m_state.in_generator_function_context)
goto read_as_identifier;
return { parse_yield_expression(), false };
default:
if (match_identifier_name())
goto read_as_identifier;
expected("primary expression");
consume();
return { create_ast_node<ErrorExpression>({ m_state.current_token.filename(), rule_start.position(), position() }) };
}
}
NonnullRefPtr<RegExpLiteral> Parser::parse_regexp_literal()
{
auto rule_start = push_start();
auto pattern = consume().value();
// Remove leading and trailing slash.
pattern = pattern.substring_view(1, pattern.length() - 2);
auto flags = String::empty();
auto parsed_flags = RegExpObject::default_flags;
if (match(TokenType::RegexFlags)) {
auto flags_start = position();
flags = consume().value();
auto parsed_flags_or_error = regex_flags_from_string(flags);
if (parsed_flags_or_error.is_error())
syntax_error(parsed_flags_or_error.release_error(), flags_start);
else
parsed_flags = parsed_flags_or_error.release_value();
}
auto parsed_pattern = parse_regex_pattern(pattern, parsed_flags.has_flag_set(ECMAScriptFlags::Unicode));
auto parsed_regex = Regex<ECMA262>::parse_pattern(parsed_pattern, parsed_flags);
if (parsed_regex.error != regex::Error::NoError)
syntax_error(String::formatted("RegExp compile error: {}", Regex<ECMA262>(parsed_regex, parsed_pattern, parsed_flags).error_string()), rule_start.position());
SourceRange range { m_state.current_token.filename(), rule_start.position(), position() };
return create_ast_node<RegExpLiteral>(move(range), move(parsed_regex), move(parsed_pattern), move(parsed_flags), pattern.to_string(), move(flags));
}
NonnullRefPtr<Expression> Parser::parse_unary_prefixed_expression()
{
auto rule_start = push_start();
auto precedence = g_operator_precedence.get(m_state.current_token.type());
auto associativity = operator_associativity(m_state.current_token.type());
switch (m_state.current_token.type()) {
case TokenType::PlusPlus: {
consume();
auto rhs_start = position();
auto rhs = parse_expression(precedence, associativity);
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for ++foo()
if (!is<Identifier>(*rhs) && !is<MemberExpression>(*rhs))
syntax_error(String::formatted("Right-hand side of prefix increment operator must be identifier or member expression, got {}", rhs->class_name()), rhs_start);
if (m_state.strict_mode && is<Identifier>(*rhs)) {
auto& identifier = static_cast<Identifier&>(*rhs);
auto& name = identifier.string();
check_identifier_name_for_assignment_validity(name);
}
return create_ast_node<UpdateExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UpdateOp::Increment, move(rhs), true);
}
case TokenType::MinusMinus: {
consume();
auto rhs_start = position();
auto rhs = parse_expression(precedence, associativity);
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for --foo()
if (!is<Identifier>(*rhs) && !is<MemberExpression>(*rhs))
syntax_error(String::formatted("Right-hand side of prefix decrement operator must be identifier or member expression, got {}", rhs->class_name()), rhs_start);
if (m_state.strict_mode && is<Identifier>(*rhs)) {
auto& identifier = static_cast<Identifier&>(*rhs);
auto& name = identifier.string();
check_identifier_name_for_assignment_validity(name);
}
return create_ast_node<UpdateExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UpdateOp::Decrement, move(rhs), true);
}
case TokenType::ExclamationMark:
consume();
return create_ast_node<UnaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UnaryOp::Not, parse_expression(precedence, associativity));
case TokenType::Tilde:
consume();
return create_ast_node<UnaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UnaryOp::BitwiseNot, parse_expression(precedence, associativity));
case TokenType::Plus:
consume();
return create_ast_node<UnaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UnaryOp::Plus, parse_expression(precedence, associativity));
case TokenType::Minus:
consume();
return create_ast_node<UnaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UnaryOp::Minus, parse_expression(precedence, associativity));
case TokenType::Typeof:
consume();
return create_ast_node<UnaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UnaryOp::Typeof, parse_expression(precedence, associativity));
case TokenType::Void:
consume();
return create_ast_node<UnaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UnaryOp::Void, parse_expression(precedence, associativity));
case TokenType::Delete: {
consume();
auto rhs_start = position();
auto rhs = parse_expression(precedence, associativity);
if (is<Identifier>(*rhs) && m_state.strict_mode) {
syntax_error("Delete of an unqualified identifier in strict mode.", rhs_start);
}
return create_ast_node<UnaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UnaryOp::Delete, move(rhs));
}
default:
expected("primary expression");
consume();
return create_ast_node<ErrorExpression>({ m_state.current_token.filename(), rule_start.position(), position() });
}
}
NonnullRefPtr<Expression> Parser::parse_property_key()
{
auto rule_start = push_start();
if (match(TokenType::StringLiteral)) {
return parse_string_literal(consume());
} else if (match(TokenType::NumericLiteral)) {
return create_ast_node<NumericLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, consume().double_value());
} else if (match(TokenType::BigIntLiteral)) {
return create_ast_node<BigIntLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, consume().value());
} else if (match(TokenType::BracketOpen)) {
consume(TokenType::BracketOpen);
auto result = parse_expression(2);
consume(TokenType::BracketClose);
return result;
} else {
if (!match_identifier_name())
expected("IdentifierName");
return create_ast_node<StringLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, consume().value());
}
}
NonnullRefPtr<ObjectExpression> Parser::parse_object_expression()
{
auto rule_start = push_start();
consume(TokenType::CurlyOpen);
NonnullRefPtrVector<ObjectProperty> properties;
ObjectProperty::Type property_type;
Optional<SourceRange> invalid_object_literal_property_range;
auto skip_to_next_property = [&] {
while (!done() && !match(TokenType::Comma) && !match(TokenType::CurlyOpen))
consume();
};
// It is a Syntax Error if PropertyNameList of PropertyDefinitionList contains any duplicate
// entries for "__proto__" and at least two of those entries were obtained from productions of
// the form PropertyDefinition : PropertyName : AssignmentExpression .
bool has_direct_proto_property = false;
while (!done() && !match(TokenType::CurlyClose)) {
property_type = ObjectProperty::Type::KeyValue;
RefPtr<Expression> property_name;
RefPtr<Expression> property_value;
FunctionKind function_kind { FunctionKind::Regular };
if (match(TokenType::TripleDot)) {
consume();
property_name = parse_expression(4);
properties.append(create_ast_node<ObjectProperty>({ m_state.current_token.filename(), rule_start.position(), position() }, *property_name, nullptr, ObjectProperty::Type::Spread, false));
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
continue;
}
auto type = m_state.current_token.type();
if (match(TokenType::Asterisk)) {
consume();
property_type = ObjectProperty::Type::KeyValue;
property_name = parse_property_key();
function_kind = FunctionKind ::Generator;
} else if (match_identifier()) {
auto identifier = consume().value();
if (identifier == "get" && match_property_key()) {
property_type = ObjectProperty::Type::Getter;
property_name = parse_property_key();
} else if (identifier == "set" && match_property_key()) {
property_type = ObjectProperty::Type::Setter;
property_name = parse_property_key();
} else {
property_name = create_ast_node<StringLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, identifier);
property_value = create_ast_node<Identifier>({ m_state.current_token.filename(), rule_start.position(), position() }, identifier);
}
} else {
property_name = parse_property_key();
}
bool is_proto = (type == TokenType::StringLiteral || type == TokenType::Identifier) && is<StringLiteral>(*property_name) && static_cast<StringLiteral const&>(*property_name).value() == "__proto__";
if (property_type == ObjectProperty::Type::Getter || property_type == ObjectProperty::Type::Setter) {
if (!match(TokenType::ParenOpen)) {
expected("'(' for object getter or setter property");
skip_to_next_property();
continue;
}
}
if (match(TokenType::Equals)) {
// Not a valid object literal, but a valid assignment target
consume();
// Parse the expression and throw it away
auto expression = parse_expression(2);
if (!invalid_object_literal_property_range.has_value())
invalid_object_literal_property_range = expression->source_range();
} else if (match(TokenType::ParenOpen)) {
VERIFY(property_name);
u8 parse_options = FunctionNodeParseOptions::AllowSuperPropertyLookup;
if (property_type == ObjectProperty::Type::Getter)
parse_options |= FunctionNodeParseOptions::IsGetterFunction;
if (property_type == ObjectProperty::Type::Setter)
parse_options |= FunctionNodeParseOptions::IsSetterFunction;
if (function_kind == FunctionKind::Generator)
parse_options |= FunctionNodeParseOptions::IsGeneratorFunction;
auto function = parse_function_node<FunctionExpression>(parse_options);
properties.append(create_ast_node<ObjectProperty>({ m_state.current_token.filename(), rule_start.position(), position() }, *property_name, function, property_type, true));
} else if (match(TokenType::Colon)) {
if (!property_name) {
expected("a property name");
skip_to_next_property();
continue;
}
consume();
if (is_proto) {
if (has_direct_proto_property)
syntax_error("Property name '__proto__' must not appear more than once in object literal");
has_direct_proto_property = true;
}
properties.append(create_ast_node<ObjectProperty>({ m_state.current_token.filename(), rule_start.position(), position() }, *property_name, parse_expression(2), property_type, false));
} else if (property_name && property_value) {
properties.append(create_ast_node<ObjectProperty>({ m_state.current_token.filename(), rule_start.position(), position() }, *property_name, *property_value, property_type, false));
} else {
expected("a property");
skip_to_next_property();
continue;
}
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::CurlyClose);
return create_ast_node<ObjectExpression>(
{ m_state.current_token.filename(), rule_start.position(), position() },
move(properties),
move(invalid_object_literal_property_range));
}
NonnullRefPtr<ArrayExpression> Parser::parse_array_expression()
{
auto rule_start = push_start();
consume(TokenType::BracketOpen);
Vector<RefPtr<Expression>> elements;
while (match_expression() || match(TokenType::TripleDot) || match(TokenType::Comma)) {
RefPtr<Expression> expression;
if (match(TokenType::TripleDot)) {
consume(TokenType::TripleDot);
expression = create_ast_node<SpreadExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, parse_expression(2));
} else if (match_expression()) {
expression = parse_expression(2);
}
elements.append(expression);
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::BracketClose);
return create_ast_node<ArrayExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(elements));
}
NonnullRefPtr<StringLiteral> Parser::parse_string_literal(const Token& token, bool in_template_literal)
{
auto rule_start = push_start();
auto status = Token::StringValueStatus::Ok;
auto string = token.string_value(status);
if (status != Token::StringValueStatus::Ok) {
String message;
if (status == Token::StringValueStatus::LegacyOctalEscapeSequence) {
m_state.string_legacy_octal_escape_sequence_in_scope = true;
if (in_template_literal)
message = "Octal escape sequence not allowed in template literal";
else if (m_state.strict_mode)
message = "Octal escape sequence in string literal not allowed in strict mode";
} else if (status == Token::StringValueStatus::MalformedHexEscape || status == Token::StringValueStatus::MalformedUnicodeEscape) {
auto type = status == Token::StringValueStatus::MalformedUnicodeEscape ? "unicode" : "hexadecimal";
message = String::formatted("Malformed {} escape sequence", type);
} else if (status == Token::StringValueStatus::UnicodeEscapeOverflow) {
message = "Unicode code_point must not be greater than 0x10ffff in escape sequence";
} else {
VERIFY_NOT_REACHED();
}
if (!message.is_empty())
syntax_error(message, Position { token.line_number(), token.line_column() });
}
auto is_use_strict_directive = !in_template_literal && (token.value() == "'use strict'" || token.value() == "\"use strict\"");
return create_ast_node<StringLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, string, is_use_strict_directive);
}
NonnullRefPtr<TemplateLiteral> Parser::parse_template_literal(bool is_tagged)
{
auto rule_start = push_start();
consume(TokenType::TemplateLiteralStart);
NonnullRefPtrVector<Expression> expressions;
NonnullRefPtrVector<Expression> raw_strings;
auto append_empty_string = [this, &rule_start, &expressions, &raw_strings, is_tagged]() {
auto string_literal = create_ast_node<StringLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, "");
expressions.append(string_literal);
if (is_tagged)
raw_strings.append(string_literal);
};
if (!match(TokenType::TemplateLiteralString))
append_empty_string();
while (!done() && !match(TokenType::TemplateLiteralEnd) && !match(TokenType::UnterminatedTemplateLiteral)) {
if (match(TokenType::TemplateLiteralString)) {
auto token = consume();
expressions.append(parse_string_literal(token, true));
if (is_tagged)
raw_strings.append(create_ast_node<StringLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, token.value()));
} else if (match(TokenType::TemplateLiteralExprStart)) {
consume(TokenType::TemplateLiteralExprStart);
if (match(TokenType::TemplateLiteralExprEnd)) {
syntax_error("Empty template literal expression block");
return create_ast_node<TemplateLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, expressions);
}
expressions.append(parse_expression(0));
if (match(TokenType::UnterminatedTemplateLiteral)) {
syntax_error("Unterminated template literal");
return create_ast_node<TemplateLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, expressions);
}
consume(TokenType::TemplateLiteralExprEnd);
if (!match(TokenType::TemplateLiteralString))
append_empty_string();
} else {
expected("Template literal string or expression");
break;
}
}
if (match(TokenType::UnterminatedTemplateLiteral)) {
syntax_error("Unterminated template literal");
} else {
consume(TokenType::TemplateLiteralEnd);
}
if (is_tagged)
return create_ast_node<TemplateLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, expressions, raw_strings);
return create_ast_node<TemplateLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, expressions);
}
NonnullRefPtr<Expression> Parser::parse_expression(int min_precedence, Associativity associativity, const Vector<TokenType>& forbidden)
{
auto rule_start = push_start();
auto [expression, should_continue_parsing] = parse_primary_expression();
auto check_for_invalid_object_property = [&](auto& expression) {
if (is<ObjectExpression>(*expression)) {
if (auto range = static_cast<ObjectExpression&>(*expression).invalid_property_range(); range.has_value())
syntax_error("Invalid property in object literal", range->start);
}
};
while (match(TokenType::TemplateLiteralStart)) {
auto template_literal = parse_template_literal(true);
expression = create_ast_node<TaggedTemplateLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expression), move(template_literal));
}
if (should_continue_parsing) {
while (match_secondary_expression(forbidden)) {
int new_precedence = g_operator_precedence.get(m_state.current_token.type());
if (new_precedence < min_precedence)
break;
if (new_precedence == min_precedence && associativity == Associativity::Left)
break;
check_for_invalid_object_property(expression);
Associativity new_associativity = operator_associativity(m_state.current_token.type());
expression = parse_secondary_expression(move(expression), new_precedence, new_associativity);
while (match(TokenType::TemplateLiteralStart) && !is<UpdateExpression>(*expression)) {
auto template_literal = parse_template_literal(true);
expression = create_ast_node<TaggedTemplateLiteral>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expression), move(template_literal));
}
}
}
check_for_invalid_object_property(expression);
if (match(TokenType::Comma) && min_precedence <= 1) {
NonnullRefPtrVector<Expression> expressions;
expressions.append(expression);
while (match(TokenType::Comma)) {
consume();
expressions.append(parse_expression(2));
}
expression = create_ast_node<SequenceExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expressions));
}
return expression;
}
NonnullRefPtr<Expression> Parser::parse_secondary_expression(NonnullRefPtr<Expression> lhs, int min_precedence, Associativity associativity)
{
auto rule_start = push_start();
switch (m_state.current_token.type()) {
case TokenType::Plus:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::Addition, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PlusEquals:
return parse_assignment_expression(AssignmentOp::AdditionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Minus:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::Subtraction, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::MinusEquals:
return parse_assignment_expression(AssignmentOp::SubtractionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Asterisk:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::Multiplication, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::AsteriskEquals:
return parse_assignment_expression(AssignmentOp::MultiplicationAssignment, move(lhs), min_precedence, associativity);
case TokenType::Slash:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::Division, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::SlashEquals:
return parse_assignment_expression(AssignmentOp::DivisionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Percent:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::Modulo, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PercentEquals:
return parse_assignment_expression(AssignmentOp::ModuloAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoubleAsterisk:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::Exponentiation, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleAsteriskEquals:
return parse_assignment_expression(AssignmentOp::ExponentiationAssignment, move(lhs), min_precedence, associativity);
case TokenType::GreaterThan:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::GreaterThan, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::GreaterThanEquals:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::GreaterThanEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::LessThan:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::LessThan, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::LessThanEquals:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::LessThanEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::EqualsEqualsEquals:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::TypedEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ExclamationMarkEqualsEquals:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::TypedInequals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::EqualsEquals:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::AbstractEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ExclamationMarkEquals:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::AbstractInequals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::In:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::In, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::Instanceof:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::InstanceOf, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::Ampersand:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::BitwiseAnd, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::AmpersandEquals:
return parse_assignment_expression(AssignmentOp::BitwiseAndAssignment, move(lhs), min_precedence, associativity);
case TokenType::Pipe:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::BitwiseOr, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PipeEquals:
return parse_assignment_expression(AssignmentOp::BitwiseOrAssignment, move(lhs), min_precedence, associativity);
case TokenType::Caret:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::BitwiseXor, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::CaretEquals:
return parse_assignment_expression(AssignmentOp::BitwiseXorAssignment, move(lhs), min_precedence, associativity);
case TokenType::ShiftLeft:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::LeftShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ShiftLeftEquals:
return parse_assignment_expression(AssignmentOp::LeftShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::ShiftRight:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::RightShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ShiftRightEquals:
return parse_assignment_expression(AssignmentOp::RightShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::UnsignedShiftRight:
consume();
return create_ast_node<BinaryExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, BinaryOp::UnsignedRightShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::UnsignedShiftRightEquals:
return parse_assignment_expression(AssignmentOp::UnsignedRightShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::ParenOpen:
return parse_call_expression(move(lhs));
case TokenType::Equals:
return parse_assignment_expression(AssignmentOp::Assignment, move(lhs), min_precedence, associativity);
case TokenType::Period:
consume();
if (!match_identifier_name())
expected("IdentifierName");
return create_ast_node<MemberExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(lhs), create_ast_node<Identifier>({ m_state.current_token.filename(), rule_start.position(), position() }, consume().value()));
case TokenType::BracketOpen: {
consume(TokenType::BracketOpen);
auto expression = create_ast_node<MemberExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(lhs), parse_expression(0), true);
consume(TokenType::BracketClose);
return expression;
}
case TokenType::PlusPlus:
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for foo()++
if (!is<Identifier>(*lhs) && !is<MemberExpression>(*lhs))
syntax_error(String::formatted("Left-hand side of postfix increment operator must be identifier or member expression, got {}", lhs->class_name()));
if (m_state.strict_mode && is<Identifier>(*lhs)) {
auto& identifier = static_cast<Identifier&>(*lhs);
auto& name = identifier.string();
check_identifier_name_for_assignment_validity(name);
}
consume();
return create_ast_node<UpdateExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UpdateOp::Increment, move(lhs));
case TokenType::MinusMinus:
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for foo()--
if (!is<Identifier>(*lhs) && !is<MemberExpression>(*lhs))
syntax_error(String::formatted("Left-hand side of postfix increment operator must be identifier or member expression, got {}", lhs->class_name()));
if (m_state.strict_mode && is<Identifier>(*lhs)) {
auto& identifier = static_cast<Identifier&>(*lhs);
auto& name = identifier.string();
check_identifier_name_for_assignment_validity(name);
}
consume();
return create_ast_node<UpdateExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, UpdateOp::Decrement, move(lhs));
case TokenType::DoubleAmpersand:
consume();
return create_ast_node<LogicalExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, LogicalOp::And, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleAmpersandEquals:
return parse_assignment_expression(AssignmentOp::AndAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoublePipe:
consume();
return create_ast_node<LogicalExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, LogicalOp::Or, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoublePipeEquals:
return parse_assignment_expression(AssignmentOp::OrAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoubleQuestionMark:
consume();
return create_ast_node<LogicalExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, LogicalOp::NullishCoalescing, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleQuestionMarkEquals:
return parse_assignment_expression(AssignmentOp::NullishAssignment, move(lhs), min_precedence, associativity);
case TokenType::QuestionMark:
return parse_conditional_expression(move(lhs));
default:
expected("secondary expression");
consume();
return create_ast_node<ErrorExpression>({ m_state.current_token.filename(), rule_start.position(), position() });
}
}
NonnullRefPtr<AssignmentExpression> Parser::parse_assignment_expression(AssignmentOp assignment_op, NonnullRefPtr<Expression> lhs, int min_precedence, Associativity associativity)
{
auto rule_start = push_start();
VERIFY(match(TokenType::Equals)
|| match(TokenType::PlusEquals)
|| match(TokenType::MinusEquals)
|| match(TokenType::AsteriskEquals)
|| match(TokenType::SlashEquals)
|| match(TokenType::PercentEquals)
|| match(TokenType::DoubleAsteriskEquals)
|| match(TokenType::AmpersandEquals)
|| match(TokenType::PipeEquals)
|| match(TokenType::CaretEquals)
|| match(TokenType::ShiftLeftEquals)
|| match(TokenType::ShiftRightEquals)
|| match(TokenType::UnsignedShiftRightEquals)
|| match(TokenType::DoubleAmpersandEquals)
|| match(TokenType::DoublePipeEquals)
|| match(TokenType::DoubleQuestionMarkEquals));
consume();
if (assignment_op == AssignmentOp::Assignment) {
auto synthesize_binding_pattern = [this](Expression const& expression) -> RefPtr<BindingPattern> {
// Clear any syntax error that has occurred in the range that 'expression' spans.
m_state.errors.remove_all_matching([range = expression.source_range()](auto const& error) {
return error.position.has_value() && range.contains(*error.position);
});
// Make a parser and parse the source for this expression as a binding pattern.
auto source = m_state.lexer.source().substring_view(expression.source_range().start.offset - 2, expression.source_range().end.offset - expression.source_range().start.offset);
Lexer lexer { source, m_state.lexer.filename(), expression.source_range().start.line, expression.source_range().start.column };
Parser parser { lexer };
parser.m_state.strict_mode = m_state.strict_mode;
parser.m_state.allow_super_property_lookup = m_state.allow_super_property_lookup;
parser.m_state.allow_super_constructor_call = m_state.allow_super_constructor_call;
parser.m_state.in_function_context = m_state.in_function_context;
parser.m_state.in_generator_function_context = m_state.in_generator_function_context;
parser.m_state.in_arrow_function_context = m_state.in_arrow_function_context;
parser.m_state.in_break_context = m_state.in_break_context;
parser.m_state.in_continue_context = m_state.in_continue_context;
parser.m_state.string_legacy_octal_escape_sequence_in_scope = m_state.string_legacy_octal_escape_sequence_in_scope;
auto result = parser.parse_binding_pattern();
if (parser.has_errors())
m_state.errors.extend(parser.errors());
return result;
};
if (is<ArrayExpression>(*lhs) || is<ObjectExpression>(*lhs)) {
auto binding_pattern = synthesize_binding_pattern(*lhs);
if (binding_pattern) {
auto rhs = parse_expression(min_precedence, associativity);
return create_ast_node<AssignmentExpression>(
{ m_state.current_token.filename(), rule_start.position(), position() },
assignment_op,
binding_pattern.release_nonnull(),
move(rhs));
}
}
}
if (!is<Identifier>(*lhs) && !is<MemberExpression>(*lhs) && !is<CallExpression>(*lhs)) {
syntax_error("Invalid left-hand side in assignment");
} else if (m_state.strict_mode && is<Identifier>(*lhs)) {
auto name = static_cast<const Identifier&>(*lhs).string();
check_identifier_name_for_assignment_validity(name);
} else if (m_state.strict_mode && is<CallExpression>(*lhs)) {
syntax_error("Cannot assign to function call");
}
auto rhs = parse_expression(min_precedence, associativity);
if (assignment_op == AssignmentOp::Assignment && is<FunctionExpression>(*rhs)) {
auto ident = lhs;
if (is<MemberExpression>(*lhs)) {
ident = static_cast<MemberExpression&>(*lhs).property();
}
if (is<Identifier>(*ident))
static_cast<FunctionExpression&>(*rhs).set_name_if_possible(static_cast<Identifier&>(*ident).string());
}
return create_ast_node<AssignmentExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, assignment_op, move(lhs), move(rhs));
}
NonnullRefPtr<Identifier> Parser::parse_identifier()
{
auto identifier_start = position();
auto token = consume_identifier();
return create_ast_node<Identifier>(
{ m_state.current_token.filename(), identifier_start, position() },
token.value());
}
NonnullRefPtr<CallExpression> Parser::parse_call_expression(NonnullRefPtr<Expression> lhs)
{
auto rule_start = push_start();
if (!m_state.allow_super_constructor_call && is<SuperExpression>(*lhs))
syntax_error("'super' keyword unexpected here");
consume(TokenType::ParenOpen);
Vector<CallExpression::Argument> arguments;
while (match_expression() || match(TokenType::TripleDot)) {
if (match(TokenType::TripleDot)) {
consume();
arguments.append({ parse_expression(2), true });
} else {
arguments.append({ parse_expression(2), false });
}
if (!match(TokenType::Comma))
break;
consume();
}
consume(TokenType::ParenClose);
if (is<SuperExpression>(*lhs))
return create_ast_node<SuperCall>({ m_state.current_token.filename(), rule_start.position(), position() }, move(arguments));
return create_ast_node<CallExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(lhs), move(arguments));
}
NonnullRefPtr<NewExpression> Parser::parse_new_expression()
{
auto rule_start = push_start();
consume(TokenType::New);
auto callee = parse_expression(g_operator_precedence.get(TokenType::New), Associativity::Right, { TokenType::ParenOpen });
Vector<CallExpression::Argument> arguments;
if (match(TokenType::ParenOpen)) {
consume(TokenType::ParenOpen);
while (match_expression() || match(TokenType::TripleDot)) {
if (match(TokenType::TripleDot)) {
consume();
arguments.append({ parse_expression(2), true });
} else {
arguments.append({ parse_expression(2), false });
}
if (!match(TokenType::Comma))
break;
consume();
}
consume(TokenType::ParenClose);
}
return create_ast_node<NewExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(callee), move(arguments));
}
NonnullRefPtr<YieldExpression> Parser::parse_yield_expression()
{
auto rule_start = push_start();
consume(TokenType::Yield);
RefPtr<Expression> argument;
bool yield_from = false;
if (!m_state.current_token.trivia_contains_line_terminator()) {
if (match(TokenType::Asterisk)) {
consume();
yield_from = true;
}
if (yield_from || match_expression() || match(TokenType::Class))
argument = parse_expression(0);
}
return create_ast_node<YieldExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(argument), yield_from);
}
NonnullRefPtr<ReturnStatement> Parser::parse_return_statement()
{
auto rule_start = push_start();
if (!m_state.in_function_context && !m_state.in_arrow_function_context)
syntax_error("'return' not allowed outside of a function");
consume(TokenType::Return);
// Automatic semicolon insertion: terminate statement when return is followed by newline
if (m_state.current_token.trivia_contains_line_terminator())
return create_ast_node<ReturnStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, nullptr);
if (match_expression()) {
auto expression = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ReturnStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expression));
}
consume_or_insert_semicolon();
return create_ast_node<ReturnStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, nullptr);
}
NonnullRefPtr<BlockStatement> Parser::parse_block_statement()
{
auto rule_start = push_start();
bool dummy = false;
return parse_block_statement(dummy);
}
NonnullRefPtr<BlockStatement> Parser::parse_block_statement(bool& is_strict, bool error_on_binding)
{
auto rule_start = push_start();
ScopePusher scope(*this, ScopePusher::Let, Parser::Scope::Block);
auto block = create_ast_node<BlockStatement>({ m_state.current_token.filename(), rule_start.position(), position() });
consume(TokenType::CurlyOpen);
bool initial_strict_mode_state = m_state.strict_mode;
if (initial_strict_mode_state)
is_strict = true;
bool parsing_directives = true;
while (!done() && !match(TokenType::CurlyClose)) {
if (match_declaration()) {
block->append(parse_declaration());
parsing_directives = false;
} else if (match_statement()) {
auto statement = parse_statement(AllowLabelledFunction::Yes);
block->append(statement);
if (statement_is_use_strict_directive(statement)) {
if (parsing_directives) {
if (!initial_strict_mode_state) {
is_strict = true;
m_state.strict_mode = true;
}
}
if (m_state.string_legacy_octal_escape_sequence_in_scope)
syntax_error("Octal escape sequence in string literal not allowed in strict mode");
if (error_on_binding) {
syntax_error("Illegal 'use strict' directive in function with non-simple parameter list");
}
}
if (parsing_directives && is<ExpressionStatement>(*statement)) {
auto& expression_statement = static_cast<ExpressionStatement&>(*statement);
auto& expression = expression_statement.expression();
parsing_directives = is<StringLiteral>(expression);
} else {
parsing_directives = false;
}
} else {
expected("statement or declaration");
consume();
parsing_directives = false;
}
}
m_state.strict_mode = initial_strict_mode_state;
m_state.string_legacy_octal_escape_sequence_in_scope = false;
consume(TokenType::CurlyClose);
scope.add_to_scope_node(block);
return block;
}
template<typename FunctionNodeType>
NonnullRefPtr<FunctionNodeType> Parser::parse_function_node(u8 parse_options)
{
auto rule_start = push_start();
VERIFY(!(parse_options & FunctionNodeParseOptions::IsGetterFunction && parse_options & FunctionNodeParseOptions::IsSetterFunction));
TemporaryChange super_property_access_rollback(m_state.allow_super_property_lookup, !!(parse_options & FunctionNodeParseOptions::AllowSuperPropertyLookup));
TemporaryChange super_constructor_call_rollback(m_state.allow_super_constructor_call, !!(parse_options & FunctionNodeParseOptions::AllowSuperConstructorCall));
TemporaryChange break_context_rollback(m_state.in_break_context, false);
TemporaryChange continue_context_rollback(m_state.in_continue_context, false);
ScopePusher scope(*this, ScopePusher::Var, Parser::Scope::Function);
constexpr auto is_function_expression = IsSame<FunctionNodeType, FunctionExpression>;
auto is_generator = (parse_options & FunctionNodeParseOptions::IsGeneratorFunction) != 0;
String name;
if (parse_options & FunctionNodeParseOptions::CheckForFunctionAndName) {
consume(TokenType::Function);
if (!is_generator) {
is_generator = match(TokenType::Asterisk);
if (is_generator) {
consume(TokenType::Asterisk);
parse_options = parse_options | FunctionNodeParseOptions::IsGeneratorFunction;
}
}
if (FunctionNodeType::must_have_name() || match_identifier())
name = consume_identifier().value();
else if (is_function_expression && (match(TokenType::Yield) || match(TokenType::Await)))
name = consume().value();
check_identifier_name_for_assignment_validity(name);
}
TemporaryChange generator_change(m_state.in_generator_function_context, is_generator);
consume(TokenType::ParenOpen);
i32 function_length = -1;
auto parameters = parse_formal_parameters(function_length, parse_options);
consume(TokenType::ParenClose);
if (function_length == -1)
function_length = parameters.size();
TemporaryChange change(m_state.in_function_context, true);
auto old_labels_in_scope = move(m_state.labels_in_scope);
ScopeGuard guard([&]() {
m_state.labels_in_scope = move(old_labels_in_scope);
});
m_state.function_parameters.append(parameters);
bool has_binding = any_of(parameters, [](FunctionNode::Parameter const& parameter) {
return parameter.binding.has<NonnullRefPtr<BindingPattern>>();
});
bool is_strict = false;
auto body = parse_block_statement(is_strict, has_binding);
// If the function contains 'use strict' we need to check the parameters (again).
if (is_strict || is_generator) {
Vector<StringView> parameter_names;
for (auto& parameter : parameters) {
parameter.binding.visit(
[&](FlyString const& parameter_name) {
check_identifier_name_for_assignment_validity(parameter_name, is_strict);
if (is_generator && parameter_name == "yield"sv)
syntax_error("Parameter name 'yield' not allowed in this context");
for (auto& previous_name : parameter_names) {
if (previous_name == parameter_name) {
syntax_error(String::formatted("Duplicate parameter '{}' not allowed in strict mode", parameter_name));
}
}
parameter_names.append(parameter_name);
},
[&](NonnullRefPtr<BindingPattern> const& binding) {
binding->for_each_bound_name([&](auto& bound_name) {
if (is_generator && bound_name == "yield"sv)
syntax_error("Parameter name 'yield' not allowed in this context");
for (auto& previous_name : parameter_names) {
if (previous_name == bound_name) {
syntax_error(String::formatted("Duplicate parameter '{}' not allowed in strict mode", bound_name));
break;
}
}
parameter_names.append(bound_name);
});
});
}
check_identifier_name_for_assignment_validity(name, is_strict);
}
m_state.function_parameters.take_last();
scope.add_to_scope_node(body);
return create_ast_node<FunctionNodeType>(
{ m_state.current_token.filename(), rule_start.position(), position() },
name, move(body), move(parameters), function_length,
is_generator ? FunctionKind::Generator : FunctionKind::Regular, is_strict);
}
Vector<FunctionNode::Parameter> Parser::parse_formal_parameters(int& function_length, u8 parse_options)
{
auto rule_start = push_start();
bool has_default_parameter = false;
bool has_rest_parameter = false;
Vector<FunctionNode::Parameter> parameters;
auto consume_identifier_or_binding_pattern = [&]() -> Variant<FlyString, NonnullRefPtr<BindingPattern>> {
if (auto pattern = parse_binding_pattern(true))
return pattern.release_nonnull();
auto token = consume_identifier();
auto parameter_name = token.value();
check_identifier_name_for_assignment_validity(parameter_name);
for (auto& parameter : parameters) {
bool has_same_name = parameter.binding.visit(
[&](FlyString const& name) {
return name == parameter_name;
},
[&](NonnullRefPtr<BindingPattern> const& bindings) {
bool found_duplicate = false;
bindings->for_each_bound_name([&](auto& bound_name) {
if (bound_name == parameter_name)
found_duplicate = true;
});
return found_duplicate;
});
if (!has_same_name)
continue;
String message;
if (parse_options & FunctionNodeParseOptions::IsArrowFunction)
message = String::formatted("Duplicate parameter '{}' not allowed in arrow function", parameter_name);
else if (m_state.strict_mode)
message = String::formatted("Duplicate parameter '{}' not allowed in strict mode", parameter_name);
else if (has_default_parameter || match(TokenType::Equals))
message = String::formatted("Duplicate parameter '{}' not allowed in function with default parameter", parameter_name);
else if (has_rest_parameter)
message = String::formatted("Duplicate parameter '{}' not allowed in function with rest parameter", parameter_name);
if (!message.is_empty())
syntax_error(message, Position { token.line_number(), token.line_column() });
break;
}
return FlyString { token.value() };
};
while (match(TokenType::CurlyOpen) || match(TokenType::BracketOpen) || match_identifier() || match(TokenType::TripleDot)) {
if (parse_options & FunctionNodeParseOptions::IsGetterFunction)
syntax_error("Getter function must have no arguments");
if (parse_options & FunctionNodeParseOptions::IsSetterFunction && (parameters.size() >= 1 || match(TokenType::TripleDot)))
syntax_error("Setter function must have one argument");
auto is_rest = false;
if (match(TokenType::TripleDot)) {
consume();
has_rest_parameter = true;
function_length = parameters.size();
is_rest = true;
}
auto parameter = consume_identifier_or_binding_pattern();
RefPtr<Expression> default_value;
if (match(TokenType::Equals)) {
consume();
if (is_rest)
syntax_error("Rest parameter may not have a default initializer");
TemporaryChange change(m_state.in_function_context, true);
has_default_parameter = true;
function_length = parameters.size();
default_value = parse_expression(2);
bool is_generator = parse_options & FunctionNodeParseOptions::IsGeneratorFunction;
if ((is_generator || m_state.strict_mode) && default_value && default_value->fast_is<Identifier>() && static_cast<Identifier&>(*default_value).string() == "yield"sv)
syntax_error("Generator function parameter initializer cannot contain a reference to an identifier named \"yield\"");
if (default_value && is<YieldExpression>(*default_value))
syntax_error("Yield expression not allowed in formal parameter");
}
parameters.append({ move(parameter), default_value, is_rest });
if (match(TokenType::ParenClose))
break;
consume(TokenType::Comma);
if (is_rest)
break;
}
if (parse_options & FunctionNodeParseOptions::IsSetterFunction && parameters.is_empty())
syntax_error("Setter function must have one argument");
return parameters;
}
static constexpr AK::Array<StringView, 36> s_reserved_words = { "break", "case", "catch", "class", "const", "continue", "debugger", "default", "delete", "do", "else", "enum", "export", "extends", "false", "finally", "for", "function", "if", "import", "in", "instanceof", "new", "null", "return", "super", "switch", "this", "throw", "true", "try", "typeof", "var", "void", "while", "with" };
RefPtr<BindingPattern> Parser::parse_binding_pattern(bool strict_checks)
{
auto rule_start = push_start();
TokenType closing_token;
bool is_object = true;
if (match(TokenType::BracketOpen)) {
consume();
closing_token = TokenType::BracketClose;
is_object = false;
} else if (match(TokenType::CurlyOpen)) {
consume();
closing_token = TokenType::CurlyClose;
} else {
return {};
}
Vector<BindingPattern::BindingEntry> entries;
while (!match(closing_token)) {
if (!is_object && match(TokenType::Comma)) {
consume();
entries.append(BindingPattern::BindingEntry {});
continue;
}
auto is_rest = false;
if (match(TokenType::TripleDot)) {
consume();
is_rest = true;
}
decltype(BindingPattern::BindingEntry::name) name = Empty {};
decltype(BindingPattern::BindingEntry::alias) alias = Empty {};
RefPtr<Expression> initializer = {};
if (is_object) {
if (match_identifier_name()) {
name = create_ast_node<Identifier>(
{ m_state.current_token.filename(), rule_start.position(), position() },
consume().value());
} else if (match(TokenType::BracketOpen)) {
consume();
auto expression = parse_expression(0);
if (strict_checks && m_state.in_generator_function_context && is<YieldExpression>(*expression))
syntax_error("Yield expression not allowed in formal parameter within generator context");
name = move(expression);
consume(TokenType::BracketClose);
} else {
expected("identifier or computed property name");
return {};
}
if (!is_rest && match(TokenType::Colon)) {
consume();
if (match(TokenType::CurlyOpen) || match(TokenType::BracketOpen)) {
auto binding_pattern = parse_binding_pattern(strict_checks);
if (!binding_pattern)
return {};
alias = binding_pattern.release_nonnull();
} else if (match_identifier_name()) {
alias = create_ast_node<Identifier>(
{ m_state.current_token.filename(), rule_start.position(), position() },
consume_identifier().value());
if (strict_checks && match(TokenType::BracketOpen))
syntax_error("Illegal property in declaration context");
} else {
expected("identifier or binding pattern");
return {};
}
}
} else {
if (match_identifier_name()) {
// BindingElement must always have an Empty name field
auto identifier_name = consume_identifier().value();
alias = create_ast_node<Identifier>(
{ m_state.current_token.filename(), rule_start.position(), position() },
identifier_name);
if (strict_checks) {
for (auto& entry : entries) {
if (entry.alias.has<NonnullRefPtr<Identifier>>()) {
if (entry.alias.get<NonnullRefPtr<Identifier>>()->string() == identifier_name)
syntax_error("Duplicate parameter names in bindings");
}
}
}
} else if (match(TokenType::BracketOpen) || match(TokenType::CurlyOpen)) {
auto pattern = parse_binding_pattern(strict_checks);
if (!pattern) {
expected("binding pattern");
return {};
}
alias = pattern.release_nonnull();
} else {
expected("identifier or binding pattern");
return {};
}
}
if (match(TokenType::Equals)) {
if (is_rest) {
syntax_error("Unexpected initializer after rest element");
return {};
}
consume();
initializer = parse_expression(2);
if (!initializer) {
expected("initialization expression");
return {};
}
if (strict_checks && is<YieldExpression>(*initializer))
syntax_error("Yield expression is not allow in formal parameter");
}
entries.append(BindingPattern::BindingEntry { move(name), move(alias), move(initializer), is_rest });
if (match(TokenType::Comma)) {
if (is_rest) {
syntax_error("Rest element may not be followed by a comma");
return {};
}
consume();
}
}
while (!is_object && match(TokenType::Comma))
consume();
consume(closing_token);
auto kind = is_object ? BindingPattern::Kind::Object : BindingPattern::Kind::Array;
auto pattern = adopt_ref(*new BindingPattern);
pattern->entries = move(entries);
pattern->kind = kind;
Vector<StringView> bound_names;
pattern->for_each_bound_name([&](auto& name) {
if (strict_checks) {
if (bound_names.contains_slow(name))
syntax_error("Duplicate parameter names in bindings");
bound_names.append(name);
}
check_identifier_name_for_assignment_validity(name);
});
return pattern;
}
NonnullRefPtr<VariableDeclaration> Parser::parse_variable_declaration(bool for_loop_variable_declaration)
{
auto rule_start = push_start();
DeclarationKind declaration_kind;
switch (m_state.current_token.type()) {
case TokenType::Var:
declaration_kind = DeclarationKind::Var;
break;
case TokenType::Let:
declaration_kind = DeclarationKind::Let;
break;
case TokenType::Const:
declaration_kind = DeclarationKind::Const;
break;
default:
VERIFY_NOT_REACHED();
}
consume();
NonnullRefPtrVector<VariableDeclarator> declarations;
for (;;) {
Variant<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>, Empty> target { Empty() };
if (match_identifier()) {
auto identifier_start = push_start();
auto name = consume_identifier().value();
target = create_ast_node<Identifier>(
{ m_state.current_token.filename(), rule_start.position(), position() },
name);
check_identifier_name_for_assignment_validity(name);
if ((declaration_kind == DeclarationKind::Let || declaration_kind == DeclarationKind::Const) && name == "let"sv)
syntax_error("Lexical binding may not be called 'let'");
// Check we do not have duplicates
auto check_declarations = [&](VariableDeclarator const& declarator) {
declarator.target().visit([&](NonnullRefPtr<Identifier> const& identifier) {
if (identifier->string() == name)
syntax_error(String::formatted("Identifier '{}' has already been declared", name), identifier_start.position()); },
[&](auto const&) {});
};
// In any previous let scope
if (!m_state.let_scopes.is_empty()) {
for (auto& decls : m_state.let_scopes.last()) {
for (auto& decl : decls.declarations()) {
check_declarations(decl);
}
}
}
// or this declaration
if (declaration_kind == DeclarationKind::Let || declaration_kind == DeclarationKind::Const) {
// FIXME: We should check the var_scopes here as well however this has edges cases with for loops.
// See duplicated-variable-declarations.js.
if (!m_state.function_parameters.is_empty() && m_state.current_scope->parent->type == Scope::Function) {
for (auto& parameter : m_state.function_parameters.last()) {
parameter.binding.visit(
[&](FlyString const& parameter_name) {
if (parameter_name == name)
syntax_error(String::formatted("Identifier '{}' has already been declared", name), identifier_start.position());
},
[&](NonnullRefPtr<BindingPattern> const& binding) {
binding->for_each_bound_name([&](auto& bound_name) {
if (bound_name == name)
syntax_error(String::formatted("Identifier '{}' has already been declared", name), identifier_start.position());
});
});
}
}
for (auto& declaration : declarations) {
check_declarations(declaration);
}
}
} else if (auto pattern = parse_binding_pattern(declaration_kind != DeclarationKind::Var)) {
target = pattern.release_nonnull();
if ((declaration_kind == DeclarationKind::Let || declaration_kind == DeclarationKind::Const)) {
target.get<NonnullRefPtr<BindingPattern>>()->for_each_bound_name([this, &declarations](auto& name) {
if (name == "let"sv)
syntax_error("Lexical binding may not be called 'let'");
// FIXME: Again we do not check everything here see for example the parameter check above.
// However a more sustainable solution should be used since these checks are now spread over multiple sites.
for (auto& declaration : declarations) {
declaration.target().visit(
[&](NonnullRefPtr<Identifier> const& identifier) {
if (identifier->string() == name)
syntax_error(String::formatted("Identifier '{}' has already been declared", name));
},
[&](auto const&) {});
}
});
}
} else if (!m_state.in_generator_function_context && match(TokenType::Yield)) {
if (m_state.strict_mode)
syntax_error("Identifier must not be a reserved word in strict mode ('yield')");
target = create_ast_node<Identifier>(
{ m_state.current_token.filename(), rule_start.position(), position() },
consume().value());
}
if (target.has<Empty>()) {
expected("identifier or a binding pattern");
if (match(TokenType::Comma)) {
consume();
continue;
}
break;
}
RefPtr<Expression> init;
if (match(TokenType::Equals)) {
consume();
init = parse_expression(2);
} else if (!for_loop_variable_declaration && declaration_kind == DeclarationKind::Const) {
syntax_error("Missing initializer in 'const' variable declaration");
} else if (!for_loop_variable_declaration && target.has<NonnullRefPtr<BindingPattern>>()) {
syntax_error("Missing initializer in destructuring assignment");
}
if (init && is<FunctionExpression>(*init) && target.has<NonnullRefPtr<Identifier>>()) {
static_cast<FunctionExpression&>(*init).set_name_if_possible(target.get<NonnullRefPtr<Identifier>>()->string());
}
declarations.append(create_ast_node<VariableDeclarator>(
{ m_state.current_token.filename(), rule_start.position(), position() },
move(target).downcast<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>>(),
move(init)));
if (match(TokenType::Comma)) {
consume();
continue;
}
break;
}
if (!for_loop_variable_declaration)
consume_or_insert_semicolon();
auto declaration = create_ast_node<VariableDeclaration>({ m_state.current_token.filename(), rule_start.position(), position() }, declaration_kind, move(declarations));
if (declaration_kind == DeclarationKind::Var) {
m_state.var_scopes.last().append(declaration);
} else {
m_state.let_scopes.last().append(declaration);
for (auto& declarator : declaration->declarations()) {
declarator.target().visit(
[&](const NonnullRefPtr<Identifier>& id) {
m_state.current_scope->lexical_declarations.set(id->string());
},
[&](const NonnullRefPtr<BindingPattern>& binding) {
binding->for_each_bound_name([&](const auto& name) {
m_state.current_scope->lexical_declarations.set(name);
});
});
}
}
return declaration;
}
NonnullRefPtr<ThrowStatement> Parser::parse_throw_statement()
{
auto rule_start = push_start();
consume(TokenType::Throw);
// Automatic semicolon insertion: terminate statement when throw is followed by newline
if (m_state.current_token.trivia_contains_line_terminator()) {
syntax_error("No line break is allowed between 'throw' and its expression");
return create_ast_node<ThrowStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, create_ast_node<ErrorExpression>({ m_state.current_token.filename(), rule_start.position(), position() }));
}
auto expression = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ThrowStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expression));
}
NonnullRefPtr<BreakStatement> Parser::parse_break_statement()
{
auto rule_start = push_start();
consume(TokenType::Break);
FlyString target_label;
if (match(TokenType::Semicolon)) {
consume();
} else {
if (match(TokenType::Identifier) && !m_state.current_token.trivia_contains_line_terminator()) {
target_label = consume().value();
if (!m_state.labels_in_scope.contains(target_label))
syntax_error(String::formatted("Label '{}' not found", target_label));
}
consume_or_insert_semicolon();
}
if (target_label.is_null() && !m_state.in_break_context)
syntax_error("Unlabeled 'break' not allowed outside of a loop or switch statement");
return create_ast_node<BreakStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, target_label);
}
NonnullRefPtr<ContinueStatement> Parser::parse_continue_statement()
{
auto rule_start = push_start();
if (!m_state.in_continue_context)
syntax_error("'continue' not allow outside of a loop");
consume(TokenType::Continue);
FlyString target_label;
if (match(TokenType::Semicolon)) {
consume();
return create_ast_node<ContinueStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, target_label);
}
if (match(TokenType::Identifier) && !m_state.current_token.trivia_contains_line_terminator()) {
target_label = consume().value();
if (!m_state.labels_in_scope.contains(target_label))
syntax_error(String::formatted("Label '{}' not found", target_label));
}
consume_or_insert_semicolon();
return create_ast_node<ContinueStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, target_label);
}
NonnullRefPtr<ConditionalExpression> Parser::parse_conditional_expression(NonnullRefPtr<Expression> test)
{
auto rule_start = push_start();
consume(TokenType::QuestionMark);
auto consequent = parse_expression(2);
consume(TokenType::Colon);
auto alternate = parse_expression(2);
return create_ast_node<ConditionalExpression>({ m_state.current_token.filename(), rule_start.position(), position() }, move(test), move(consequent), move(alternate));
}
NonnullRefPtr<TryStatement> Parser::parse_try_statement()
{
auto rule_start = push_start();
consume(TokenType::Try);
auto block = parse_block_statement();
RefPtr<CatchClause> handler;
if (match(TokenType::Catch))
handler = parse_catch_clause();
RefPtr<BlockStatement> finalizer;
if (match(TokenType::Finally)) {
consume();
finalizer = parse_block_statement();
}
if (!handler && !finalizer)
syntax_error("try statement must have a 'catch' or 'finally' clause");
return create_ast_node<TryStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(block), move(handler), move(finalizer));
}
NonnullRefPtr<DoWhileStatement> Parser::parse_do_while_statement()
{
auto rule_start = push_start();
consume(TokenType::Do);
auto body = [&]() -> NonnullRefPtr<Statement> {
TemporaryChange break_change(m_state.in_break_context, true);
TemporaryChange continue_change(m_state.in_continue_context, true);
return parse_statement();
}();
consume(TokenType::While);
consume(TokenType::ParenOpen);
auto test = parse_expression(0);
consume(TokenType::ParenClose);
// Since ES 2015 a missing semicolon is inserted here, despite the regular ASI rules not applying
if (match(TokenType::Semicolon))
consume();
return create_ast_node<DoWhileStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(test), move(body));
}
NonnullRefPtr<WhileStatement> Parser::parse_while_statement()
{
auto rule_start = push_start();
consume(TokenType::While);
consume(TokenType::ParenOpen);
auto test = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_state.in_break_context, true);
TemporaryChange continue_change(m_state.in_continue_context, true);
auto body = parse_statement();
return create_ast_node<WhileStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(test), move(body));
}
NonnullRefPtr<SwitchStatement> Parser::parse_switch_statement()
{
auto rule_start = push_start();
consume(TokenType::Switch);
consume(TokenType::ParenOpen);
auto determinant = parse_expression(0);
consume(TokenType::ParenClose);
consume(TokenType::CurlyOpen);
NonnullRefPtrVector<SwitchCase> cases;
auto has_default = false;
while (match(TokenType::Case) || match(TokenType::Default)) {
if (match(TokenType::Default)) {
if (has_default)
syntax_error("Multiple 'default' clauses in switch statement");
has_default = true;
}
cases.append(parse_switch_case());
}
consume(TokenType::CurlyClose);
return create_ast_node<SwitchStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(determinant), move(cases));
}
NonnullRefPtr<WithStatement> Parser::parse_with_statement()
{
auto rule_start = push_start();
consume(TokenType::With);
consume(TokenType::ParenOpen);
auto object = parse_expression(0);
consume(TokenType::ParenClose);
auto body = parse_statement();
return create_ast_node<WithStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(object), move(body));
}
NonnullRefPtr<SwitchCase> Parser::parse_switch_case()
{
auto rule_start = push_start();
RefPtr<Expression> test;
if (consume().type() == TokenType::Case) {
test = parse_expression(0);
}
consume(TokenType::Colon);
NonnullRefPtrVector<Statement> consequent;
TemporaryChange break_change(m_state.in_break_context, true);
for (;;) {
if (match_declaration())
consequent.append(parse_declaration());
else if (match_statement())
consequent.append(parse_statement());
else
break;
}
return create_ast_node<SwitchCase>({ m_state.current_token.filename(), rule_start.position(), position() }, move(test), move(consequent));
}
NonnullRefPtr<CatchClause> Parser::parse_catch_clause()
{
auto rule_start = push_start();
consume(TokenType::Catch);
FlyString parameter;
RefPtr<BindingPattern> pattern_parameter;
auto should_expect_parameter = false;
if (match(TokenType::ParenOpen)) {
should_expect_parameter = true;
consume();
if (match_identifier_name() && (!match(TokenType::Yield) || !m_state.in_generator_function_context))
parameter = consume().value();
else
pattern_parameter = parse_binding_pattern(true);
consume(TokenType::ParenClose);
}
if (should_expect_parameter && parameter.is_empty() && !pattern_parameter)
expected("an identifier or a binding pattern");
if (pattern_parameter)
pattern_parameter->for_each_bound_name([this](auto& name) { check_identifier_name_for_assignment_validity(name); });
if (!parameter.is_empty())
check_identifier_name_for_assignment_validity(parameter);
auto body = parse_block_statement();
if (pattern_parameter) {
return create_ast_node<CatchClause>(
{ m_state.current_token.filename(), rule_start.position(), position() },
pattern_parameter.release_nonnull(),
move(body));
}
return create_ast_node<CatchClause>(
{ m_state.current_token.filename(), rule_start.position(), position() },
move(parameter),
move(body));
}
NonnullRefPtr<IfStatement> Parser::parse_if_statement()
{
auto rule_start = push_start();
auto parse_function_declaration_as_block_statement = [&] {
// https://tc39.es/ecma262/#sec-functiondeclarations-in-ifstatement-statement-clauses
// Code matching this production is processed as if each matching occurrence of
// FunctionDeclaration[?Yield, ?Await, ~Default] was the sole StatementListItem
// of a BlockStatement occupying that position in the source code.
ScopePusher scope(*this, ScopePusher::Let, Parser::Scope::Block);
auto block = create_ast_node<BlockStatement>({ m_state.current_token.filename(), rule_start.position(), position() });
block->append(parse_declaration());
scope.add_to_scope_node(block);
return block;
};
consume(TokenType::If);
consume(TokenType::ParenOpen);
auto predicate = parse_expression(0);
consume(TokenType::ParenClose);
RefPtr<Statement> consequent;
if (!m_state.strict_mode && match(TokenType::Function))
consequent = parse_function_declaration_as_block_statement();
else
consequent = parse_statement();
RefPtr<Statement> alternate;
if (match(TokenType::Else)) {
consume();
if (!m_state.strict_mode && match(TokenType::Function))
alternate = parse_function_declaration_as_block_statement();
else
alternate = parse_statement();
}
return create_ast_node<IfStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(predicate), move(*consequent), move(alternate));
}
NonnullRefPtr<Statement> Parser::parse_for_statement()
{
auto rule_start = push_start();
auto match_for_in_of = [&]() {
return match(TokenType::In) || (match(TokenType::Identifier) && m_state.current_token.value() == "of");
};
consume(TokenType::For);
consume(TokenType::ParenOpen);
bool in_scope = false;
ScopeGuard guard([&]() {
if (in_scope)
m_state.let_scopes.take_last();
});
RefPtr<ASTNode> init;
if (!match(TokenType::Semicolon)) {
if (match_variable_declaration()) {
if (!match(TokenType::Var)) {
m_state.let_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
in_scope = true;
}
init = parse_variable_declaration(true);
if (match_for_in_of())
return parse_for_in_of_statement(*init);
if (static_cast<VariableDeclaration&>(*init).declaration_kind() == DeclarationKind::Const) {
for (auto& declaration : static_cast<VariableDeclaration&>(*init).declarations()) {
if (!declaration.init())
syntax_error("Missing initializer in 'const' variable declaration");
}
}
} else if (match_expression()) {
init = parse_expression(0, Associativity::Right, { TokenType::In });
if (match_for_in_of())
return parse_for_in_of_statement(*init);
} else {
syntax_error("Unexpected token in for loop");
}
}
consume(TokenType::Semicolon);
RefPtr<Expression> test;
if (!match(TokenType::Semicolon))
test = parse_expression(0);
consume(TokenType::Semicolon);
RefPtr<Expression> update;
if (!match(TokenType::ParenClose))
update = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_state.in_break_context, true);
TemporaryChange continue_change(m_state.in_continue_context, true);
auto body = parse_statement();
return create_ast_node<ForStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(init), move(test), move(update), move(body));
}
NonnullRefPtr<Statement> Parser::parse_for_in_of_statement(NonnullRefPtr<ASTNode> lhs)
{
auto rule_start = push_start();
if (is<VariableDeclaration>(*lhs)) {
auto declarations = static_cast<VariableDeclaration&>(*lhs).declarations();
if (declarations.size() > 1)
syntax_error("multiple declarations not allowed in for..in/of");
if (declarations.size() < 1)
syntax_error("need exactly one variable declaration in for..in/of");
else if (declarations.first().init() != nullptr)
syntax_error("variable initializer not allowed in for..in/of");
} else if (!lhs->is_identifier() && !is<ObjectExpression>(*lhs) && !is<MemberExpression>(*lhs) && !is<ArrayExpression>(*lhs)) {
syntax_error(String::formatted("Invalid left-hand side in for-loop ('{}')", lhs->class_name()));
}
auto in_or_of = consume();
if (in_or_of.type() != TokenType::In) {
if (is<MemberExpression>(*lhs)) {
auto& member = static_cast<MemberExpression const&>(*lhs);
if (member.object().is_identifier() && static_cast<Identifier const&>(member.object()).string() == "let"sv)
syntax_error("For of statement may not start with let.");
}
}
auto rhs = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_state.in_break_context, true);
TemporaryChange continue_change(m_state.in_continue_context, true);
auto body = parse_statement();
if (in_or_of.type() == TokenType::In)
return create_ast_node<ForInStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(lhs), move(rhs), move(body));
return create_ast_node<ForOfStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(lhs), move(rhs), move(body));
}
NonnullRefPtr<DebuggerStatement> Parser::parse_debugger_statement()
{
auto rule_start = push_start();
consume(TokenType::Debugger);
consume_or_insert_semicolon();
return create_ast_node<DebuggerStatement>({ m_state.current_token.filename(), rule_start.position(), position() });
}
bool Parser::match(TokenType type) const
{
return m_state.current_token.type() == type;
}
bool Parser::match_expression() const
{
auto type = m_state.current_token.type();
return type == TokenType::BoolLiteral
|| type == TokenType::NumericLiteral
|| type == TokenType::BigIntLiteral
|| type == TokenType::StringLiteral
|| type == TokenType::TemplateLiteralStart
|| type == TokenType::NullLiteral
|| match_identifier()
|| type == TokenType::New
|| type == TokenType::CurlyOpen
|| type == TokenType::BracketOpen
|| type == TokenType::ParenOpen
|| type == TokenType::Function
|| type == TokenType::This
|| type == TokenType::Super
|| type == TokenType::RegexLiteral
|| type == TokenType::Slash // Wrongly recognized regex by lexer
|| type == TokenType::SlashEquals // Wrongly recognized regex by lexer (/=a/ is a valid regex)
|| type == TokenType::Yield
|| match_unary_prefixed_expression();
}
bool Parser::match_unary_prefixed_expression() const
{
auto type = m_state.current_token.type();
return type == TokenType::PlusPlus
|| type == TokenType::MinusMinus
|| type == TokenType::ExclamationMark
|| type == TokenType::Tilde
|| type == TokenType::Plus
|| type == TokenType::Minus
|| type == TokenType::Typeof
|| type == TokenType::Void
|| type == TokenType::Delete;
}
bool Parser::match_secondary_expression(const Vector<TokenType>& forbidden) const
{
auto type = m_state.current_token.type();
if (forbidden.contains_slow(type))
return false;
return type == TokenType::Plus
|| type == TokenType::PlusEquals
|| type == TokenType::Minus
|| type == TokenType::MinusEquals
|| type == TokenType::Asterisk
|| type == TokenType::AsteriskEquals
|| type == TokenType::Slash
|| type == TokenType::SlashEquals
|| type == TokenType::Percent
|| type == TokenType::PercentEquals
|| type == TokenType::DoubleAsterisk
|| type == TokenType::DoubleAsteriskEquals
|| type == TokenType::Equals
|| type == TokenType::EqualsEqualsEquals
|| type == TokenType::ExclamationMarkEqualsEquals
|| type == TokenType::EqualsEquals
|| type == TokenType::ExclamationMarkEquals
|| type == TokenType::GreaterThan
|| type == TokenType::GreaterThanEquals
|| type == TokenType::LessThan
|| type == TokenType::LessThanEquals
|| type == TokenType::ParenOpen
|| type == TokenType::Period
|| type == TokenType::BracketOpen
|| (type == TokenType::PlusPlus && !m_state.current_token.trivia_contains_line_terminator())
|| (type == TokenType::MinusMinus && !m_state.current_token.trivia_contains_line_terminator())
|| type == TokenType::In
|| type == TokenType::Instanceof
|| type == TokenType::QuestionMark
|| type == TokenType::Ampersand
|| type == TokenType::AmpersandEquals
|| type == TokenType::Pipe
|| type == TokenType::PipeEquals
|| type == TokenType::Caret
|| type == TokenType::CaretEquals
|| type == TokenType::ShiftLeft
|| type == TokenType::ShiftLeftEquals
|| type == TokenType::ShiftRight
|| type == TokenType::ShiftRightEquals
|| type == TokenType::UnsignedShiftRight
|| type == TokenType::UnsignedShiftRightEquals
|| type == TokenType::DoubleAmpersand
|| type == TokenType::DoubleAmpersandEquals
|| type == TokenType::DoublePipe
|| type == TokenType::DoublePipeEquals
|| type == TokenType::DoubleQuestionMark
|| type == TokenType::DoubleQuestionMarkEquals;
}
bool Parser::match_statement() const
{
auto type = m_state.current_token.type();
return match_expression()
|| type == TokenType::Return
|| type == TokenType::Yield
|| type == TokenType::Do
|| type == TokenType::If
|| type == TokenType::Throw
|| type == TokenType::Try
|| type == TokenType::While
|| type == TokenType::With
|| type == TokenType::For
|| type == TokenType::CurlyOpen
|| type == TokenType::Switch
|| type == TokenType::Break
|| type == TokenType::Continue
|| type == TokenType::Var
|| type == TokenType::Debugger
|| type == TokenType::Semicolon;
}
bool Parser::match_export_or_import() const
{
auto type = m_state.current_token.type();
return type == TokenType::Export
|| type == TokenType::Import;
}
bool Parser::match_declaration()
{
auto type = m_state.current_token.type();
if (type == TokenType::Let && !m_state.strict_mode) {
return try_match_let_declaration();
}
return type == TokenType::Function
|| type == TokenType::Class
|| type == TokenType::Const
|| type == TokenType::Let;
}
bool Parser::try_match_let_declaration()
{
VERIFY(m_state.current_token.type() == TokenType::Let);
save_state();
ScopeGuard state_rollback = [&] {
load_state();
};
consume(TokenType::Let);
if (match_identifier_name() && m_state.current_token.value() != "in"sv)
return true;
if (match(TokenType::CurlyOpen) || match(TokenType::BracketOpen))
return true;
return false;
}
bool Parser::match_variable_declaration()
{
auto type = m_state.current_token.type();
if (type == TokenType::Let && !m_state.strict_mode) {
return try_match_let_declaration();
}
return type == TokenType::Var
|| type == TokenType::Let
|| type == TokenType::Const;
}
bool Parser::match_identifier() const
{
return m_state.current_token.type() == TokenType::Identifier
|| (m_state.current_token.type() == TokenType::Let && !m_state.strict_mode)
|| (m_state.current_token.type() == TokenType::Yield && !m_state.in_generator_function_context && !m_state.strict_mode); // See note in Parser::parse_identifier().
}
bool Parser::match_identifier_name() const
{
return m_state.current_token.is_identifier_name();
}
bool Parser::match_property_key() const
{
auto type = m_state.current_token.type();
return match_identifier_name()
|| type == TokenType::BracketOpen
|| type == TokenType::StringLiteral
|| type == TokenType::NumericLiteral
|| type == TokenType::BigIntLiteral;
}
bool Parser::done() const
{
return match(TokenType::Eof);
}
Token Parser::consume()
{
auto old_token = m_state.current_token;
m_state.current_token = m_state.lexer.next();
return old_token;
}
void Parser::consume_or_insert_semicolon()
{
// Semicolon was found and will be consumed
if (match(TokenType::Semicolon)) {
consume();
return;
}
// Insert semicolon if...
// ...token is preceded by one or more newlines
if (m_state.current_token.trivia_contains_line_terminator())
return;
// ...token is a closing curly brace
if (match(TokenType::CurlyClose))
return;
// ...token is eof
if (match(TokenType::Eof))
return;
// No rule for semicolon insertion applies -> syntax error
expected("Semicolon");
}
Token Parser::consume_identifier()
{
if (match(TokenType::Identifier))
return consume(TokenType::Identifier);
// Note that 'let' is not a reserved keyword, but our lexer considers it such
// As it's pretty nice to have that (for syntax highlighting and such), we'll
// special-case it here instead.
if (match(TokenType::Let)) {
if (m_state.strict_mode)
syntax_error("'let' is not allowed as an identifier in strict mode");
return consume();
}
if (match(TokenType::Yield)) {
if (m_state.strict_mode || m_state.in_generator_function_context)
syntax_error("Identifier must not be a reserved word in strict mode ('yield')");
return consume();
}
expected("Identifier");
return consume();
}
// https://tc39.es/ecma262/#prod-IdentifierReference
Token Parser::consume_identifier_reference()
{
if (match(TokenType::Identifier))
return consume(TokenType::Identifier);
// See note in Parser::parse_identifier().
if (match(TokenType::Let)) {
if (m_state.strict_mode)
syntax_error("'let' is not allowed as an identifier in strict mode");
return consume();
}
if (match(TokenType::Yield)) {
if (m_state.strict_mode)
syntax_error("Identifier reference may not be 'yield' in strict mode");
return consume();
}
if (match(TokenType::Await)) {
syntax_error("Identifier reference may not be 'await'");
return consume();
}
expected(Token::name(TokenType::Identifier));
return consume();
}
Token Parser::consume(TokenType expected_type)
{
if (!match(expected_type)) {
expected(Token::name(expected_type));
}
auto token = consume();
if (expected_type == TokenType::Identifier) {
if (m_state.strict_mode && is_strict_reserved_word(token.value()))
syntax_error(String::formatted("Identifier must not be a reserved word in strict mode ('{}')", token.value()));
}
return token;
}
Token Parser::consume_and_validate_numeric_literal()
{
auto is_unprefixed_octal_number = [](const StringView& value) {
return value.length() > 1 && value[0] == '0' && is_ascii_digit(value[1]);
};
auto literal_start = position();
auto token = consume(TokenType::NumericLiteral);
if (m_state.strict_mode && is_unprefixed_octal_number(token.value()))
syntax_error("Unprefixed octal number not allowed in strict mode", literal_start);
if (match_identifier_name() && m_state.current_token.trivia().is_empty())
syntax_error("Numeric literal must not be immediately followed by identifier");
return token;
}
void Parser::expected(const char* what)
{
auto message = m_state.current_token.message();
if (message.is_empty())
message = String::formatted("Unexpected token {}. Expected {}", m_state.current_token.name(), what);
syntax_error(message);
}
Position Parser::position() const
{
return {
m_state.current_token.line_number(),
m_state.current_token.line_column(),
m_state.current_token.offset(),
};
}
bool Parser::try_parse_arrow_function_expression_failed_at_position(const Position& position) const
{
auto it = m_token_memoizations.find(position);
if (it == m_token_memoizations.end())
return false;
return (*it).value.try_parse_arrow_function_expression_failed;
}
void Parser::set_try_parse_arrow_function_expression_failed_at_position(const Position& position, bool failed)
{
m_token_memoizations.set(position, { failed });
}
void Parser::syntax_error(const String& message, Optional<Position> position)
{
if (!position.has_value())
position = this->position();
m_state.errors.append({ message, position });
}
void Parser::save_state()
{
m_saved_state.append(m_state);
}
void Parser::load_state()
{
VERIFY(!m_saved_state.is_empty());
m_state = m_saved_state.take_last();
}
void Parser::discard_saved_state()
{
m_saved_state.take_last();
}
void Parser::check_identifier_name_for_assignment_validity(StringView name, bool force_strict)
{
// FIXME: this is now called from multiple places maybe the error message should be dynamic?
if (any_of(s_reserved_words, [&](auto& value) { return name == value; })) {
syntax_error("Binding pattern target may not be a reserved word");
} else if (m_state.strict_mode || force_strict) {
if (name.is_one_of("arguments"sv, "eval"sv))
syntax_error("Binding pattern target may not be called 'arguments' or 'eval' in strict mode");
else if (is_strict_reserved_word(name))
syntax_error(String::formatted("Binding pattern target may not be called '{}' in strict mode", name));
}
}
NonnullRefPtr<ImportStatement> Parser::parse_import_statement(Program& program)
{
auto rule_start = push_start();
if (program.type() != Program::Type::Module)
syntax_error("Cannot use import statement outside a module");
consume(TokenType::Import);
if (match(TokenType::StringLiteral)) {
auto module_name = consume(TokenType::StringLiteral).value();
return create_ast_node<ImportStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, module_name);
}
auto match_imported_binding = [&] {
return match_identifier() || match(TokenType::Yield) || match(TokenType::Await);
};
auto match_as = [&] {
return match(TokenType::Identifier) && m_state.current_token.value() == "as"sv;
};
bool continue_parsing = true;
struct ImportWithLocation {
ImportStatement::ImportEntry entry;
Position position;
};
Vector<ImportWithLocation> entries_with_location;
if (match_imported_binding()) {
auto id_position = position();
auto bound_name = consume().value();
entries_with_location.append({ { "default", bound_name }, id_position });
if (match(TokenType::Comma)) {
consume(TokenType::Comma);
} else {
continue_parsing = false;
}
}
if (!continue_parsing) {
// skip the rest
} else if (match(TokenType::Asterisk)) {
consume(TokenType::Asterisk);
if (!match_as())
syntax_error(String::formatted("Unexpected token: {}", m_state.current_token.name()));
consume(TokenType::Identifier);
if (match_imported_binding()) {
auto namespace_position = position();
auto namespace_name = consume().value();
entries_with_location.append({ { "*", namespace_name }, namespace_position });
} else {
syntax_error(String::formatted("Unexpected token: {}", m_state.current_token.name()));
}
} else if (match(TokenType::CurlyOpen)) {
consume(TokenType::CurlyOpen);
while (!done() && !match(TokenType::CurlyClose)) {
if (match_identifier_name()) {
auto require_as = !match_imported_binding();
auto name_position = position();
auto name = consume().value();
if (match_as()) {
consume(TokenType::Identifier);
auto alias_position = position();
auto alias = consume_identifier().value();
check_identifier_name_for_assignment_validity(alias);
entries_with_location.append({ { name, alias }, alias_position });
} else if (require_as) {
syntax_error(String::formatted("Unexpected reserved word '{}'", name));
} else {
check_identifier_name_for_assignment_validity(name);
entries_with_location.append({ { name, name }, name_position });
}
} else {
expected("identifier");
break;
}
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::CurlyClose);
} else {
expected("import clauses");
}
auto from_statement = consume(TokenType::Identifier).value();
if (from_statement != "from"sv)
syntax_error(String::formatted("Expected 'from' got {}", from_statement));
auto module_name = consume(TokenType::StringLiteral).value();
Vector<ImportStatement::ImportEntry> entries;
entries.ensure_capacity(entries_with_location.size());
for (auto& entry : entries_with_location) {
for (auto& import_statement : program.imports()) {
if (import_statement.has_bound_name(entry.entry.local_name))
syntax_error(String::formatted("Identifier '{}' already declared", entry.entry.local_name), entry.position);
}
for (auto& new_entry : entries) {
if (new_entry.local_name == entry.entry.local_name)
syntax_error(String::formatted("Identifier '{}' already declared", entry.entry.local_name), entry.position);
}
entries.append(move(entry.entry));
}
return create_ast_node<ImportStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, module_name, move(entries));
}
NonnullRefPtr<ExportStatement> Parser::parse_export_statement(Program& program)
{
auto rule_start = push_start();
if (program.type() != Program::Type::Module)
syntax_error("Cannot use export statement outside a module");
auto match_as = [&] {
return match(TokenType::Identifier) && m_state.current_token.value() == "as"sv;
};
auto match_from = [&] {
return match(TokenType::Identifier) && m_state.current_token.value() == "from"sv;
};
consume(TokenType::Export);
struct EntryAndLocation {
ExportStatement::ExportEntry entry;
Position position;
void to_module_request(String from_module)
{
entry.kind = ExportStatement::ExportEntry::Kind::ModuleRequest;
entry.module_request = from_module;
}
};
Vector<EntryAndLocation> entries_with_location;
RefPtr<ASTNode> expression = {};
if (match(TokenType::Default)) {
auto default_position = position();
consume(TokenType::Default);
String local_name;
if (match(TokenType::Class)) {
auto class_expression = parse_class_expression(false);
local_name = class_expression->name();
expression = move(class_expression);
} else if (match(TokenType::Function)) {
auto func_expr = parse_function_node<FunctionExpression>();
local_name = func_expr->name();
expression = move(func_expr);
// TODO: Allow async function
} else if (match_expression()) {
expression = parse_expression(2);
consume_or_insert_semicolon();
local_name = "*default*";
} else {
expected("Declaration or assignment expression");
}
entries_with_location.append({ { "default", local_name }, default_position });
} else {
enum FromSpecifier {
NotAllowed,
Optional,
Required
} check_for_from { NotAllowed };
if (match(TokenType::Asterisk)) {
auto asterisk_position = position();
consume(TokenType::Asterisk);
if (match_as()) {
consume(TokenType::Identifier);
if (match_identifier_name()) {
auto namespace_position = position();
auto exported_name = consume().value();
entries_with_location.append({ { exported_name, "*" }, namespace_position });
} else {
expected("identifier");
}
} else {
entries_with_location.append({ { {}, "*" }, asterisk_position });
}
check_for_from = Required;
} else if (match_declaration()) {
auto decl_position = position();
auto declaration = parse_declaration();
if (is<FunctionDeclaration>(*declaration)) {
auto& func = static_cast<FunctionDeclaration&>(*declaration);
entries_with_location.append({ { func.name(), func.name() }, func.source_range().start });
} else if (is<ClassDeclaration>(*declaration)) {
auto& class_declaration = static_cast<ClassDeclaration&>(*declaration);
entries_with_location.append({ { class_declaration.class_name(), class_declaration.class_name() }, class_declaration.source_range().start });
} else {
VERIFY(is<VariableDeclaration>(*declaration));
auto& variables = static_cast<VariableDeclaration&>(*declaration);
for (auto& decl : variables.declarations()) {
decl.target().visit(
[&](NonnullRefPtr<Identifier> const& identifier) {
entries_with_location.append({ { identifier->string(), identifier->string() }, identifier->source_range().start });
},
[&](NonnullRefPtr<BindingPattern> const& binding) {
binding->for_each_bound_name([&](auto& name) {
entries_with_location.append({ { name, name }, decl_position });
});
});
}
}
expression = declaration;
} else if (match(TokenType::Var)) {
auto variable_position = position();
auto variable_declaration = parse_variable_declaration();
for (auto& decl : variable_declaration->declarations()) {
decl.target().visit(
[&](NonnullRefPtr<Identifier> const& identifier) {
entries_with_location.append({ { identifier->string(), identifier->string() }, identifier->source_range().start });
},
[&](NonnullRefPtr<BindingPattern> const& binding) {
binding->for_each_bound_name([&](auto& name) {
entries_with_location.append({ { name, name }, variable_position });
});
});
}
expression = variable_declaration;
} else if (match(TokenType::CurlyOpen)) {
consume(TokenType::CurlyOpen);
while (!done() && !match(TokenType::CurlyClose)) {
if (match_identifier_name()) {
auto identifier_position = position();
auto identifier = consume().value();
if (match_as()) {
consume(TokenType::Identifier);
if (match_identifier_name()) {
auto export_name = consume().value();
entries_with_location.append({ { export_name, identifier }, identifier_position });
} else {
expected("identifier name");
}
} else {
entries_with_location.append({ { identifier, identifier }, identifier_position });
}
} else {
expected("identifier");
break;
}
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::CurlyClose);
check_for_from = Optional;
} else {
syntax_error("Unexpected token 'export'", rule_start.position());
}
if (check_for_from != NotAllowed && match_from()) {
consume(TokenType::Identifier);
if (match(TokenType::StringLiteral)) {
auto from_specifier = consume().value();
for (auto& entry : entries_with_location)
entry.to_module_request(from_specifier);
} else {
expected("ModuleSpecifier");
}
} else if (check_for_from == Required) {
expected("from");
}
if (check_for_from != NotAllowed)
consume_or_insert_semicolon();
}
Vector<ExportStatement::ExportEntry> entries;
entries.ensure_capacity(entries_with_location.size());
for (auto& entry : entries_with_location) {
for (auto& export_statement : program.exports()) {
if (export_statement.has_export(entry.entry.export_name))
syntax_error(String::formatted("Duplicate export with name: '{}'", entry.entry.export_name), entry.position);
}
for (auto& new_entry : entries) {
if (new_entry.export_name == entry.entry.export_name)
syntax_error(String::formatted("Duplicate export with name: '{}'", entry.entry.export_name), entry.position);
}
entries.append(move(entry.entry));
}
return create_ast_node<ExportStatement>({ m_state.current_token.filename(), rule_start.position(), position() }, move(expression), move(entries));
}
}