ladybird/Libraries/LibJS/AST.cpp
Andreas Kling a007b3c379 LibJS: Move "strict mode" state to the call stack
Each call frame now knows whether it's executing in strict mode.
It's no longer necessary to access the scope stack to find this mode.
2020-10-04 17:03:33 +02:00

1988 lines
64 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/HashMap.h>
#include <AK/HashTable.h>
#include <AK/ScopeGuard.h>
#include <AK/StringBuilder.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/IteratorOperations.h>
#include <LibJS/Runtime/MarkedValueList.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibJS/Runtime/ScriptFunction.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/StringObject.h>
#include <stdio.h>
namespace JS {
static void update_function_name(Value& value, const FlyString& name, HashTable<const JS::Cell*>& visited)
{
if (!value.is_object())
return;
if (visited.contains(value.as_cell()))
return;
visited.set(value.as_cell());
auto& object = value.as_object();
if (object.is_function()) {
auto& function = static_cast<Function&>(object);
if (function.is_script_function() && function.name().is_empty())
static_cast<ScriptFunction&>(function).set_name(name);
} else if (object.is_array()) {
auto& array = static_cast<Array&>(object);
for (auto& entry : array.indexed_properties().values_unordered())
update_function_name(entry.value, name, visited);
}
}
static void update_function_name(Value& value, const FlyString& name)
{
HashTable<const JS::Cell*> visited;
update_function_name(value, name, visited);
}
static String get_function_name(GlobalObject& global_object, Value value)
{
if (value.is_symbol())
return String::format("[%s]", value.as_symbol().description().characters());
if (value.is_string())
return value.as_string().string();
return value.to_string(global_object);
}
Value ScopeNode::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return interpreter.execute_statement(global_object, *this);
}
Value Program::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return interpreter.execute_statement(global_object, *this, {}, ScopeType::Block);
}
Value FunctionDeclaration::execute(Interpreter&, GlobalObject&) const
{
return js_undefined();
}
Value FunctionExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return ScriptFunction::create(global_object, name(), body(), parameters(), function_length(), interpreter.current_environment(), is_strict_mode() || interpreter.vm().in_strict_mode(), m_is_arrow_function);
}
Value ExpressionStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return m_expression->execute(interpreter, global_object);
}
CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter, GlobalObject& global_object) const
{
auto& vm = interpreter.vm();
if (is_new_expression()) {
// Computing |this| is irrelevant for "new" expression.
return { js_undefined(), m_callee->execute(interpreter, global_object) };
}
if (m_callee->is_super_expression()) {
// If we are calling super, |this| has not been initialized yet, and would not be meaningful to provide.
auto new_target = interpreter.vm().get_new_target();
ASSERT(new_target.is_function());
return { js_undefined(), new_target };
}
if (m_callee->is_member_expression()) {
auto& member_expression = static_cast<const MemberExpression&>(*m_callee);
bool is_super_property_lookup = member_expression.object().is_super_expression();
auto lookup_target = is_super_property_lookup ? interpreter.current_environment()->get_super_base() : member_expression.object().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (is_super_property_lookup && lookup_target.is_nullish()) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::ObjectPrototypeNullOrUndefinedOnSuperPropertyAccess, lookup_target.to_string_without_side_effects().characters());
return {};
}
auto* this_value = is_super_property_lookup ? &vm.this_value(global_object).as_object() : lookup_target.to_object(global_object);
if (interpreter.exception())
return {};
auto property_name = member_expression.computed_property_name(interpreter, global_object);
if (!property_name.is_valid())
return {};
auto callee = lookup_target.to_object(global_object)->get(property_name).value_or(js_undefined());
return { this_value, callee };
}
return { &global_object, m_callee->execute(interpreter, global_object) };
}
Value CallExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto [this_value, callee] = compute_this_and_callee(interpreter, global_object);
if (interpreter.exception())
return {};
ASSERT(!callee.is_empty());
if (!callee.is_function()
|| (is_new_expression() && (callee.as_object().is_native_function() && !static_cast<NativeFunction&>(callee.as_object()).has_constructor()))) {
String error_message;
auto call_type = is_new_expression() ? "constructor" : "function";
if (m_callee->is_identifier() || m_callee->is_member_expression()) {
String expression_string;
if (m_callee->is_identifier()) {
expression_string = static_cast<const Identifier&>(*m_callee).string();
} else {
expression_string = static_cast<const MemberExpression&>(*m_callee).to_string_approximation();
}
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects().characters(), call_type, expression_string.characters());
} else {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::IsNotA, callee.to_string_without_side_effects().characters(), call_type);
}
return {};
}
auto& function = callee.as_function();
MarkedValueList arguments(interpreter.heap());
for (size_t i = 0; i < m_arguments.size(); ++i) {
auto value = m_arguments[i].value->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (m_arguments[i].is_spread) {
get_iterator_values(global_object, value, [&](Value iterator_value) {
if (interpreter.exception())
return IterationDecision::Break;
arguments.append(iterator_value);
return IterationDecision::Continue;
});
if (interpreter.exception())
return {};
} else {
arguments.append(value);
}
}
Object* new_object = nullptr;
Value result;
if (is_new_expression()) {
result = interpreter.vm().construct(function, function, move(arguments), global_object);
if (result.is_object())
new_object = &result.as_object();
} else if (m_callee->is_super_expression()) {
auto* super_constructor = interpreter.current_environment()->current_function()->prototype();
// FIXME: Functions should track their constructor kind.
if (!super_constructor || !super_constructor->is_function()) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::NotAConstructor, "Super constructor");
return {};
}
result = interpreter.vm().construct(static_cast<Function&>(*super_constructor), function, move(arguments), global_object);
if (interpreter.exception())
return {};
interpreter.current_environment()->bind_this_value(global_object, result);
} else {
result = interpreter.call(function, this_value, move(arguments));
}
if (interpreter.exception())
return {};
if (is_new_expression()) {
if (result.is_object())
return result;
return new_object;
}
return result;
}
Value ReturnStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto value = argument() ? argument()->execute(interpreter, global_object) : js_undefined();
if (interpreter.exception())
return {};
interpreter.vm().unwind(ScopeType::Function);
return value;
}
Value IfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto predicate_result = m_predicate->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (predicate_result.to_boolean())
return interpreter.execute_statement(global_object, *m_consequent);
if (m_alternate)
return interpreter.execute_statement(global_object, *m_alternate);
return js_undefined();
}
Value WhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value last_value = js_undefined();
while (m_test->execute(interpreter, global_object).to_boolean()) {
if (interpreter.exception())
return {};
last_value = interpreter.execute_statement(global_object, *m_body);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DoWhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value last_value = js_undefined();
do {
if (interpreter.exception())
return {};
last_value = interpreter.execute_statement(global_object, *m_body);
if (interpreter.exception())
return {};
} while (m_test->execute(interpreter, global_object).to_boolean());
return last_value;
}
Value ForStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
RefPtr<BlockStatement> wrapper;
if (m_init && m_init->is_variable_declaration() && static_cast<const VariableDeclaration*>(m_init.ptr())->declaration_kind() != DeclarationKind::Var) {
wrapper = create_ast_node<BlockStatement>();
NonnullRefPtrVector<VariableDeclaration> decls;
decls.append(*static_cast<const VariableDeclaration*>(m_init.ptr()));
wrapper->add_variables(decls);
interpreter.enter_scope(*wrapper, {}, ScopeType::Block, global_object);
}
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
Value last_value = js_undefined();
if (m_init) {
m_init->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
if (m_test) {
while (true) {
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!test_result.to_boolean())
break;
last_value = interpreter.execute_statement(global_object, *m_body);
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.vm().stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
}
} else {
while (true) {
last_value = interpreter.execute_statement(global_object, *m_body);
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.vm().stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
}
}
return last_value;
}
static FlyString variable_from_for_declaration(Interpreter& interpreter, GlobalObject& global_object, NonnullRefPtr<ASTNode> node, RefPtr<BlockStatement> wrapper)
{
FlyString variable_name;
if (node->is_variable_declaration()) {
auto* variable_declaration = static_cast<const VariableDeclaration*>(node.ptr());
ASSERT(!variable_declaration->declarations().is_empty());
if (variable_declaration->declaration_kind() != DeclarationKind::Var) {
wrapper = create_ast_node<BlockStatement>();
interpreter.enter_scope(*wrapper, {}, ScopeType::Block, global_object);
}
variable_declaration->execute(interpreter, global_object);
variable_name = variable_declaration->declarations().first().id().string();
} else if (node->is_identifier()) {
variable_name = static_cast<const Identifier&>(*node).string();
} else {
ASSERT_NOT_REACHED();
}
return variable_name;
}
Value ForInStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
if (!m_lhs->is_variable_declaration() && !m_lhs->is_identifier()) {
// FIXME: Implement "for (foo.bar in baz)", "for (foo[0] in bar)"
ASSERT_NOT_REACHED();
}
RefPtr<BlockStatement> wrapper;
auto variable_name = variable_from_for_declaration(interpreter, global_object, m_lhs, wrapper);
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
auto last_value = js_undefined();
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto* object = rhs_result.to_object(global_object);
while (object) {
auto property_names = object->get_own_properties(*object, Object::PropertyKind::Key, true);
for (auto& property_name : property_names.as_object().indexed_properties()) {
interpreter.vm().set_variable(variable_name, property_name.value_and_attributes(object).value, global_object);
if (interpreter.exception())
return {};
last_value = interpreter.execute_statement(global_object, *m_body);
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.vm().stop_unwind();
break;
} else {
return js_undefined();
}
}
}
object = object->prototype();
if (interpreter.exception())
return {};
}
return last_value;
}
Value ForOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
if (!m_lhs->is_variable_declaration() && !m_lhs->is_identifier()) {
// FIXME: Implement "for (foo.bar of baz)", "for (foo[0] of bar)"
ASSERT_NOT_REACHED();
}
RefPtr<BlockStatement> wrapper;
auto variable_name = variable_from_for_declaration(interpreter, global_object, m_lhs, wrapper);
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
auto last_value = js_undefined();
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
get_iterator_values(global_object, rhs_result, [&](Value value) {
interpreter.vm().set_variable(variable_name, value, global_object);
last_value = interpreter.execute_statement(global_object, *m_body);
if (interpreter.exception())
return IterationDecision::Break;
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.vm().stop_unwind();
} else if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.vm().stop_unwind();
return IterationDecision::Break;
} else {
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind())
return js_undefined();
return last_value;
}
Value BinaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
switch (m_op) {
case BinaryOp::Addition:
return add(global_object, lhs_result, rhs_result);
case BinaryOp::Subtraction:
return sub(global_object, lhs_result, rhs_result);
case BinaryOp::Multiplication:
return mul(global_object, lhs_result, rhs_result);
case BinaryOp::Division:
return div(global_object, lhs_result, rhs_result);
case BinaryOp::Modulo:
return mod(global_object, lhs_result, rhs_result);
case BinaryOp::Exponentiation:
return exp(global_object, lhs_result, rhs_result);
case BinaryOp::TypedEquals:
return Value(strict_eq(lhs_result, rhs_result));
case BinaryOp::TypedInequals:
return Value(!strict_eq(lhs_result, rhs_result));
case BinaryOp::AbstractEquals:
return Value(abstract_eq(global_object, lhs_result, rhs_result));
case BinaryOp::AbstractInequals:
return Value(!abstract_eq(global_object, lhs_result, rhs_result));
case BinaryOp::GreaterThan:
return greater_than(global_object, lhs_result, rhs_result);
case BinaryOp::GreaterThanEquals:
return greater_than_equals(global_object, lhs_result, rhs_result);
case BinaryOp::LessThan:
return less_than(global_object, lhs_result, rhs_result);
case BinaryOp::LessThanEquals:
return less_than_equals(global_object, lhs_result, rhs_result);
case BinaryOp::BitwiseAnd:
return bitwise_and(global_object, lhs_result, rhs_result);
case BinaryOp::BitwiseOr:
return bitwise_or(global_object, lhs_result, rhs_result);
case BinaryOp::BitwiseXor:
return bitwise_xor(global_object, lhs_result, rhs_result);
case BinaryOp::LeftShift:
return left_shift(global_object, lhs_result, rhs_result);
case BinaryOp::RightShift:
return right_shift(global_object, lhs_result, rhs_result);
case BinaryOp::UnsignedRightShift:
return unsigned_right_shift(global_object, lhs_result, rhs_result);
case BinaryOp::In:
return in(global_object, lhs_result, rhs_result);
case BinaryOp::InstanceOf:
return instance_of(global_object, lhs_result, rhs_result);
}
ASSERT_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
switch (m_op) {
case LogicalOp::And:
if (lhs_result.to_boolean()) {
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
case LogicalOp::Or: {
if (lhs_result.to_boolean())
return lhs_result;
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
case LogicalOp::NullishCoalescing:
if (lhs_result.is_nullish()) {
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
}
ASSERT_NOT_REACHED();
}
Reference Expression::to_reference(Interpreter&, GlobalObject&) const
{
return {};
}
Reference Identifier::to_reference(Interpreter& interpreter, GlobalObject&) const
{
return interpreter.vm().get_reference(string());
}
Reference MemberExpression::to_reference(Interpreter& interpreter, GlobalObject& global_object) const
{
auto object_value = m_object->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto property_name = computed_property_name(interpreter, global_object);
if (!property_name.is_valid())
return {};
return { object_value, property_name };
}
Value UnaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto& vm = interpreter.vm();
if (m_op == UnaryOp::Delete) {
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
return Value(true);
// FIXME: Support deleting locals
ASSERT(!reference.is_local_variable());
if (reference.is_global_variable())
return global_object.delete_property(reference.name());
auto* base_object = reference.base().to_object(global_object);
if (!base_object)
return {};
return base_object->delete_property(reference.name());
}
Value lhs_result;
if (m_op == UnaryOp::Typeof && m_lhs->is_identifier()) {
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception()) {
return {};
}
// FIXME: standard recommends checking with is_unresolvable but it ALWAYS return false here
if (reference.is_local_variable() || reference.is_global_variable()) {
auto name = reference.name();
lhs_result = interpreter.vm().get_variable(name.to_string(), global_object).value_or(js_undefined());
if (interpreter.exception())
return {};
}
} else {
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
switch (m_op) {
case UnaryOp::BitwiseNot:
return bitwise_not(global_object, lhs_result);
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
case UnaryOp::Plus:
return unary_plus(global_object, lhs_result);
case UnaryOp::Minus:
return unary_minus(global_object, lhs_result);
case UnaryOp::Typeof:
switch (lhs_result.type()) {
case Value::Type::Empty:
ASSERT_NOT_REACHED();
return {};
case Value::Type::Undefined:
return js_string(vm, "undefined");
case Value::Type::Null:
// yes, this is on purpose. yes, this is how javascript works.
// yes, it's silly.
return js_string(vm, "object");
case Value::Type::Number:
return js_string(vm, "number");
case Value::Type::String:
return js_string(vm, "string");
case Value::Type::Object:
if (lhs_result.is_function())
return js_string(vm, "function");
return js_string(vm, "object");
case Value::Type::Boolean:
return js_string(vm, "boolean");
case Value::Type::Symbol:
return js_string(vm, "symbol");
case Value::Type::BigInt:
return js_string(vm, "bigint");
default:
ASSERT_NOT_REACHED();
}
case UnaryOp::Void:
return js_undefined();
case UnaryOp::Delete:
ASSERT_NOT_REACHED();
}
ASSERT_NOT_REACHED();
}
Value SuperExpression::execute(Interpreter&, GlobalObject&) const
{
// The semantics for SuperExpressions are handled in CallExpression::compute_this_and_callee()
ASSERT_NOT_REACHED();
}
Value ClassMethod::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return m_function->execute(interpreter, global_object);
}
Value ClassExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value class_constructor_value = m_constructor->execute(interpreter, global_object);
if (interpreter.exception())
return {};
update_function_name(class_constructor_value, m_name);
ASSERT(class_constructor_value.is_function() && class_constructor_value.as_function().is_script_function());
ScriptFunction* class_constructor = static_cast<ScriptFunction*>(&class_constructor_value.as_function());
Value super_constructor = js_undefined();
if (!m_super_class.is_null()) {
super_constructor = m_super_class->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!super_constructor.is_function() && !super_constructor.is_null()) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::ClassDoesNotExtendAConstructorOrNull, super_constructor.to_string_without_side_effects().characters());
return {};
}
class_constructor->set_constructor_kind(Function::ConstructorKind::Derived);
Object* prototype = Object::create_empty(global_object);
Object* super_constructor_prototype = nullptr;
if (!super_constructor.is_null()) {
super_constructor_prototype = &super_constructor.as_object().get("prototype").as_object();
if (interpreter.exception())
return {};
}
prototype->set_prototype(super_constructor_prototype);
prototype->define_property("constructor", class_constructor, 0);
if (interpreter.exception())
return {};
class_constructor->define_property("prototype", prototype, 0);
if (interpreter.exception())
return {};
class_constructor->set_prototype(super_constructor.is_null() ? global_object.function_prototype() : &super_constructor.as_object());
}
auto class_prototype = class_constructor->get("prototype");
if (interpreter.exception())
return {};
if (!class_prototype.is_object()) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::NotAnObject, "Class prototype");
return {};
}
for (const auto& method : m_methods) {
auto method_value = method.execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto& method_function = method_value.as_function();
auto key = method.key().execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto& target = method.is_static() ? *class_constructor : class_prototype.as_object();
method_function.set_home_object(&target);
if (method.kind() == ClassMethod::Kind::Method) {
target.define_property(StringOrSymbol::from_value(global_object, key), method_value);
} else {
String accessor_name = [&] {
switch (method.kind()) {
case ClassMethod::Kind::Getter:
return String::format("get %s", get_function_name(global_object, key).characters());
case ClassMethod::Kind::Setter:
return String::format("set %s", get_function_name(global_object, key).characters());
default:
ASSERT_NOT_REACHED();
}
}();
update_function_name(method_value, accessor_name);
target.define_accessor(StringOrSymbol::from_value(global_object, key), method_function, method.kind() == ClassMethod::Kind::Getter, Attribute::Configurable | Attribute::Enumerable);
}
if (interpreter.exception())
return {};
}
return class_constructor;
}
Value ClassDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value class_constructor = m_class_expression->execute(interpreter, global_object);
if (interpreter.exception())
return {};
interpreter.current_environment()->set(global_object, m_class_expression->name(), { class_constructor, DeclarationKind::Let });
return js_undefined();
}
static void print_indent(int indent)
{
for (int i = 0; i < indent * 2; ++i)
putchar(' ');
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
printf("%s\n", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
if (!m_children.is_empty()) {
print_indent(indent + 1);
printf("(Children)\n");
for (auto& child : children())
child.dump(indent + 2);
}
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Addition:
op_string = "+";
break;
case BinaryOp::Subtraction:
op_string = "-";
break;
case BinaryOp::Multiplication:
op_string = "*";
break;
case BinaryOp::Division:
op_string = "/";
break;
case BinaryOp::Modulo:
op_string = "%";
break;
case BinaryOp::Exponentiation:
op_string = "**";
break;
case BinaryOp::TypedEquals:
op_string = "===";
break;
case BinaryOp::TypedInequals:
op_string = "!==";
break;
case BinaryOp::AbstractEquals:
op_string = "==";
break;
case BinaryOp::AbstractInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
case BinaryOp::UnsignedRightShift:
op_string = ">>>";
break;
case BinaryOp::In:
op_string = "in";
break;
case BinaryOp::InstanceOf:
op_string = "instanceof";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
case LogicalOp::NullishCoalescing:
op_string = "??";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
case UnaryOp::Plus:
op_string = "+";
break;
case UnaryOp::Minus:
op_string = "-";
break;
case UnaryOp::Typeof:
op_string = "typeof ";
break;
case UnaryOp::Void:
op_string = "void ";
break;
case UnaryOp::Delete:
op_string = "delete ";
break;
}
print_indent(indent);
printf("%s\n", class_name());
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
printf("CallExpression %s\n", is_new_expression() ? "[new]" : "");
m_callee->dump(indent + 1);
for (auto& argument : m_arguments)
argument.value->dump(indent + 1);
}
void ClassDeclaration::dump(int indent) const
{
ASTNode::dump(indent);
m_class_expression->dump(indent + 1);
}
void ClassExpression::dump(int indent) const
{
print_indent(indent);
ASSERT(m_name.characters());
printf("ClassExpression: \"%s\"\n", m_name.characters());
print_indent(indent);
printf("(Constructor)\n");
m_constructor->dump(indent + 1);
if (!m_super_class.is_null()) {
print_indent(indent);
printf("(Super Class)\n");
m_super_class->dump(indent + 1);
}
print_indent(indent);
printf("(Methods)\n");
for (auto& method : m_methods)
method.dump(indent + 1);
}
void ClassMethod::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Key)\n");
m_key->dump(indent + 1);
const char* kind_string = nullptr;
switch (m_kind) {
case Kind::Method:
kind_string = "Method";
break;
case Kind::Getter:
kind_string = "Getter";
break;
case Kind::Setter:
kind_string = "Setter";
break;
}
print_indent(indent);
printf("Kind: %s\n", kind_string);
print_indent(indent);
printf("Static: %s\n", m_is_static ? "true" : "false");
print_indent(indent);
printf("(Function)\n");
m_function->dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
printf("StringLiteral \"%s\"\n", m_value.characters());
}
void SuperExpression::dump(int indent) const
{
print_indent(indent);
printf("super\n");
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
printf("NumericLiteral %g\n", m_value);
}
void BigIntLiteral::dump(int indent) const
{
print_indent(indent);
printf("BigIntLiteral %s\n", m_value.characters());
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
printf("BooleanLiteral %s\n", m_value ? "true" : "false");
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
printf("null\n");
}
void FunctionNode::dump(int indent, const char* class_name) const
{
print_indent(indent);
printf("%s '%s'\n", class_name, name().characters());
if (!m_parameters.is_empty()) {
print_indent(indent + 1);
printf("(Parameters)\n");
for (auto& parameter : m_parameters) {
print_indent(indent + 2);
if (parameter.is_rest)
printf("...");
printf("%s\n", parameter.name.characters());
if (parameter.default_value)
parameter.default_value->dump(indent + 3);
}
}
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
print_indent(indent + 1);
printf("(Body)\n");
body().dump(indent + 2);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("If\n");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
printf("Else\n");
alternate()->dump(indent + 1);
}
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("While\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void DoWhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("DoWhile\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("For\n");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
void ForInStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("ForIn\n");
lhs().dump(indent + 1);
rhs().dump(indent + 1);
body().dump(indent + 1);
}
void ForOfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("ForOf\n");
lhs().dump(indent + 1);
rhs().dump(indent + 1);
body().dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto value = interpreter.vm().get_variable(string(), global_object);
if (value.is_empty()) {
interpreter.vm().throw_exception<ReferenceError>(global_object, ErrorType::UnknownIdentifier, string().characters());
return {};
}
return value;
}
void Identifier::dump(int indent) const
{
print_indent(indent);
printf("Identifier \"%s\"\n", m_string.characters());
}
void SpreadExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_target->dump(indent + 1);
}
Value SpreadExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return m_target->execute(interpreter, global_object);
}
Value ThisExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return interpreter.vm().resolve_this_binding(global_object);
}
void ThisExpression::dump(int indent) const
{
ASTNode::dump(indent);
}
Value AssignmentExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
Value lhs_result;
switch (m_op) {
case AssignmentOp::Assignment:
break;
case AssignmentOp::AdditionAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = add(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::SubtractionAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = sub(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::MultiplicationAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = mul(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::DivisionAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = div(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::ModuloAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = mod(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::ExponentiationAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = exp(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseAndAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = bitwise_and(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseOrAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = bitwise_or(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseXorAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = bitwise_xor(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::LeftShiftAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = left_shift(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::RightShiftAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = right_shift(global_object, lhs_result, rhs_result);
break;
case AssignmentOp::UnsignedRightShiftAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = unsigned_right_shift(global_object, lhs_result, rhs_result);
break;
}
if (interpreter.exception())
return {};
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
if (reference.is_unresolvable()) {
interpreter.vm().throw_exception<ReferenceError>(global_object, ErrorType::InvalidLeftHandAssignment);
return {};
}
update_function_name(rhs_result, get_function_name(global_object, reference.name().to_value(interpreter.vm())));
reference.put(global_object, rhs_result);
if (interpreter.exception())
return {};
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto reference = m_argument->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
auto old_value = reference.get(global_object);
if (interpreter.exception())
return {};
old_value = old_value.to_numeric(global_object);
if (interpreter.exception())
return {};
Value new_value;
switch (m_op) {
case UpdateOp::Increment:
if (old_value.is_number())
new_value = Value(old_value.as_double() + 1);
else
new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
break;
case UpdateOp::Decrement:
if (old_value.is_number())
new_value = Value(old_value.as_double() - 1);
else
new_value = js_bigint(interpreter.heap(), old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
break;
default:
ASSERT_NOT_REACHED();
}
reference.put(global_object, new_value);
if (interpreter.exception())
return {};
return m_prefixed ? new_value : old_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
case AssignmentOp::ModuloAssignment:
op_string = "%=";
break;
case AssignmentOp::ExponentiationAssignment:
op_string = "**=";
break;
case AssignmentOp::BitwiseAndAssignment:
op_string = "&=";
break;
case AssignmentOp::BitwiseOrAssignment:
op_string = "|=";
break;
case AssignmentOp::BitwiseXorAssignment:
op_string = "^=";
break;
case AssignmentOp::LeftShiftAssignment:
op_string = "<<=";
break;
case AssignmentOp::RightShiftAssignment:
op_string = ">>=";
break;
case AssignmentOp::UnsignedRightShiftAssignment:
op_string = ">>>=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_prefixed)
printf("%s\n", op_string);
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
printf("%s\n", op_string);
}
}
Value VariableDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
for (auto& declarator : m_declarations) {
if (auto* init = declarator.init()) {
auto initalizer_result = init->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto variable_name = declarator.id().string();
update_function_name(initalizer_result, variable_name);
interpreter.vm().set_variable(variable_name, initalizer_result, global_object, true);
}
}
return js_undefined();
}
Value VariableDeclarator::execute(Interpreter&, GlobalObject&) const
{
// NOTE: This node is handled by VariableDeclaration.
ASSERT_NOT_REACHED();
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_kind_string = nullptr;
switch (m_declaration_kind) {
case DeclarationKind::Let:
declaration_kind_string = "Let";
break;
case DeclarationKind::Var:
declaration_kind_string = "Var";
break;
case DeclarationKind::Const:
declaration_kind_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", declaration_kind_string);
for (auto& declarator : m_declarations)
declarator.dump(indent + 1);
}
void VariableDeclarator::dump(int indent) const
{
ASTNode::dump(indent);
m_id->dump(indent + 1);
if (m_init)
m_init->dump(indent + 1);
}
void ObjectProperty::dump(int indent) const
{
ASTNode::dump(indent);
m_key->dump(indent + 1);
m_value->dump(indent + 1);
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& property : m_properties) {
property.dump(indent + 1);
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectProperty::execute(Interpreter&, GlobalObject&) const
{
// NOTE: ObjectProperty execution is handled by ObjectExpression.
ASSERT_NOT_REACHED();
}
Value ObjectExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto* object = Object::create_empty(global_object);
for (auto& property : m_properties) {
auto key = property.key().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (property.type() == ObjectProperty::Type::Spread) {
if (key.is_array()) {
auto& array_to_spread = static_cast<Array&>(key.as_object());
for (auto& entry : array_to_spread.indexed_properties()) {
object->indexed_properties().append(entry.value_and_attributes(&array_to_spread).value);
if (interpreter.exception())
return {};
}
} else if (key.is_object()) {
auto& obj_to_spread = key.as_object();
for (auto& it : obj_to_spread.shape().property_table_ordered()) {
if (it.value.attributes.is_enumerable()) {
object->define_property(it.key, obj_to_spread.get(it.key));
if (interpreter.exception())
return {};
}
}
} else if (key.is_string()) {
auto& str_to_spread = key.as_string().string();
for (size_t i = 0; i < str_to_spread.length(); i++) {
object->define_property(i, js_string(interpreter.heap(), str_to_spread.substring(i, 1)));
if (interpreter.exception())
return {};
}
}
continue;
}
if (interpreter.exception())
return {};
auto value = property.value().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (value.is_function() && property.is_method())
value.as_function().set_home_object(object);
String name = get_function_name(global_object, key);
if (property.type() == ObjectProperty::Type::Getter) {
name = String::format("get %s", name.characters());
} else if (property.type() == ObjectProperty::Type::Setter) {
name = String::format("set %s", name.characters());
}
update_function_name(value, name);
if (property.type() == ObjectProperty::Type::Getter || property.type() == ObjectProperty::Type::Setter) {
ASSERT(value.is_function());
object->define_accessor(PropertyName::from_value(global_object, key), value.as_function(), property.type() == ObjectProperty::Type::Getter, Attribute::Configurable | Attribute::Enumerable);
if (interpreter.exception())
return {};
} else {
object->define_property(PropertyName::from_value(global_object, key), value);
if (interpreter.exception())
return {};
}
}
return object;
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
printf("%s (computed=%s)\n", class_name(), is_computed() ? "true" : "false");
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
PropertyName MemberExpression::computed_property_name(Interpreter& interpreter, GlobalObject& global_object) const
{
if (!is_computed()) {
ASSERT(m_property->is_identifier());
return static_cast<const Identifier&>(*m_property).string();
}
auto index = m_property->execute(interpreter, global_object);
if (interpreter.exception())
return {};
ASSERT(!index.is_empty());
if (index.is_integer() && index.as_i32() >= 0)
return index.as_i32();
if (index.is_symbol())
return &index.as_symbol();
auto index_string = index.to_string(global_object);
if (interpreter.exception())
return {};
return index_string;
}
String MemberExpression::to_string_approximation() const
{
String object_string = "<object>";
if (m_object->is_identifier())
object_string = static_cast<const Identifier&>(*m_object).string();
if (is_computed())
return String::format("%s[<computed>]", object_string.characters());
ASSERT(m_property->is_identifier());
return String::format("%s.%s", object_string.characters(), static_cast<const Identifier&>(*m_property).string().characters());
}
Value MemberExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto object_value = m_object->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto* object_result = object_value.to_object(global_object);
if (interpreter.exception())
return {};
auto property_name = computed_property_name(interpreter, global_object);
if (!property_name.is_valid())
return {};
return object_result->get(property_name).value_or(js_undefined());
}
Value StringLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
return js_string(interpreter.heap(), m_value);
}
Value NumericLiteral::execute(Interpreter&, GlobalObject&) const
{
return Value(m_value);
}
Value BigIntLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
return js_bigint(interpreter.heap(), Crypto::SignedBigInteger::from_base10(m_value.substring(0, m_value.length() - 1)));
}
Value BooleanLiteral::execute(Interpreter&, GlobalObject&) const
{
return Value(m_value);
}
Value NullLiteral::execute(Interpreter&, GlobalObject&) const
{
return js_null();
}
void RegExpLiteral::dump(int indent) const
{
print_indent(indent);
printf("%s (/%s/%s)\n", class_name(), content().characters(), flags().characters());
}
Value RegExpLiteral::execute(Interpreter&, GlobalObject& global_object) const
{
return RegExpObject::create(global_object, content(), flags());
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
if (element) {
element->dump(indent + 1);
} else {
print_indent(indent + 1);
printf("<empty>\n");
}
}
}
Value ArrayExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto* array = Array::create(global_object);
for (auto& element : m_elements) {
auto value = Value();
if (element) {
value = element->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (element->is_spread_expression()) {
get_iterator_values(global_object, value, [&](Value iterator_value) {
array->indexed_properties().append(iterator_value);
return IterationDecision::Continue;
});
if (interpreter.exception())
return {};
continue;
}
}
array->indexed_properties().append(value);
}
return array;
}
void TemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value TemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
StringBuilder string_builder;
for (auto& expression : m_expressions) {
auto expr = expression.execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto string = expr.to_string(global_object);
if (interpreter.exception())
return {};
string_builder.append(string);
}
return js_string(interpreter.heap(), string_builder.build());
}
void TaggedTemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
printf("(Tag)\n");
m_tag->dump(indent + 2);
print_indent(indent + 1);
printf("(Template Literal)\n");
m_template_literal->dump(indent + 2);
}
Value TaggedTemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto tag = m_tag->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!tag.is_function()) {
interpreter.vm().throw_exception<TypeError>(global_object, ErrorType::NotAFunction, tag.to_string_without_side_effects().characters());
return {};
}
auto& tag_function = tag.as_function();
auto& expressions = m_template_literal->expressions();
auto* strings = Array::create(global_object);
MarkedValueList arguments(interpreter.heap());
arguments.append(strings);
for (size_t i = 0; i < expressions.size(); ++i) {
auto value = expressions[i].execute(interpreter, global_object);
if (interpreter.exception())
return {};
// tag`${foo}` -> "", foo, "" -> tag(["", ""], foo)
// tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
if (i % 2 == 0) {
strings->indexed_properties().append(value);
} else {
arguments.append(value);
}
}
auto* raw_strings = Array::create(global_object);
for (auto& raw_string : m_template_literal->raw_strings()) {
auto value = raw_string.execute(interpreter, global_object);
if (interpreter.exception())
return {};
raw_strings->indexed_properties().append(value);
}
strings->define_property("raw", raw_strings, 0);
return interpreter.call(tag_function, js_undefined(), move(arguments));
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Block)\n");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
printf("(Handler)\n");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
printf("(Finalizer)\n");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
printf("CatchClause");
if (!m_parameter.is_null())
printf(" (%s)", m_parameter.characters());
printf("\n");
body().dump(indent + 1);
}
void ThrowStatement::dump(int indent) const
{
ASTNode::dump(indent);
argument().dump(indent + 1);
}
Value TryStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
interpreter.execute_statement(global_object, m_block, {}, ScopeType::Try);
if (auto* exception = interpreter.exception()) {
if (m_handler) {
interpreter.vm().clear_exception();
ArgumentVector arguments { { m_handler->parameter(), exception->value() } };
interpreter.execute_statement(global_object, m_handler->body(), move(arguments));
}
}
if (m_finalizer) {
// Keep, if any, and then clear the current exception so we can
// execute() the finalizer without an exception in our way.
auto* previous_exception = interpreter.exception();
interpreter.vm().clear_exception();
interpreter.vm().stop_unwind();
m_finalizer->execute(interpreter, global_object);
// If we previously had an exception and the finalizer didn't
// throw a new one, restore the old one.
// FIXME: This will print debug output in throw_exception() for
// a seconds time with INTERPRETER_DEBUG enabled.
if (previous_exception && !interpreter.exception())
interpreter.vm().throw_exception(previous_exception);
}
return js_undefined();
}
Value CatchClause::execute(Interpreter&, GlobalObject&) const
{
// NOTE: CatchClause execution is handled by TryStatement.
ASSERT_NOT_REACHED();
return {};
}
Value ThrowStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto value = m_argument->execute(interpreter, global_object);
if (interpreter.vm().exception())
return {};
interpreter.vm().throw_exception(global_object, value);
return {};
}
Value SwitchStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto discriminant_result = m_discriminant->execute(interpreter, global_object);
if (interpreter.exception())
return {};
bool falling_through = false;
for (auto& switch_case : m_cases) {
if (!falling_through && switch_case.test()) {
auto test_result = switch_case.test()->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!strict_eq(discriminant_result, test_result))
continue;
}
falling_through = true;
for (auto& statement : switch_case.consequent()) {
statement.execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (interpreter.vm().should_unwind()) {
if (interpreter.vm().should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.vm().stop_unwind();
return {};
}
return {};
}
}
}
return js_undefined();
}
Value SwitchCase::execute(Interpreter&, GlobalObject&) const
{
return {};
}
Value BreakStatement::execute(Interpreter& interpreter, GlobalObject&) const
{
interpreter.vm().unwind(ScopeType::Breakable, m_target_label);
return js_undefined();
}
Value ContinueStatement::execute(Interpreter& interpreter, GlobalObject&) const
{
interpreter.vm().unwind(ScopeType::Continuable, m_target_label);
return js_undefined();
}
void SwitchStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_discriminant->dump(indent + 1);
for (auto& switch_case : m_cases) {
switch_case.dump(indent + 1);
}
}
void SwitchCase::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_test) {
printf("(Test)\n");
m_test->dump(indent + 2);
} else {
printf("(Default)\n");
}
print_indent(indent + 1);
printf("(Consequent)\n");
for (auto& statement : m_consequent)
statement.dump(indent + 2);
}
Value ConditionalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return {};
Value result;
if (test_result.to_boolean()) {
result = m_consequent->execute(interpreter, global_object);
} else {
result = m_alternate->execute(interpreter, global_object);
}
if (interpreter.exception())
return {};
return result;
}
void ConditionalExpression::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
printf("(Test)\n");
m_test->dump(indent + 2);
print_indent(indent + 1);
printf("(Consequent)\n");
m_consequent->dump(indent + 2);
print_indent(indent + 1);
printf("(Alternate)\n");
m_alternate->dump(indent + 2);
}
void SequenceExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value SequenceExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value last_value;
for (auto& expression : m_expressions) {
last_value = expression.execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DebuggerStatement::execute(Interpreter&, GlobalObject&) const
{
// Sorry, no JavaScript debugger available (yet)!
return js_undefined();
}
void ScopeNode::add_variables(NonnullRefPtrVector<VariableDeclaration> variables)
{
m_variables.append(move(variables));
}
void ScopeNode::add_functions(NonnullRefPtrVector<FunctionDeclaration> functions)
{
m_functions.append(move(functions));
}
}