ladybird/Libraries/LibCompress/Deflate.cpp
Nico Weber ef1b21004f Everywhere: Fix typos
Mostly in comments, but sprintf() now prints "August" instead of
"Auguest" so that's something.
2020-10-02 16:03:17 +02:00

450 lines
13 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Array.h>
#include <AK/Assertions.h>
#include <AK/BinarySearch.h>
#include <AK/LogStream.h>
#include <AK/MemoryStream.h>
#include <LibCompress/Deflate.h>
namespace Compress {
const CanonicalCode& CanonicalCode::fixed_literal_codes()
{
static CanonicalCode code;
static bool initialized = false;
if (initialized)
return code;
Array<u8, 288> data;
data.span().slice(0, 144 - 0).fill(8);
data.span().slice(144, 256 - 144).fill(9);
data.span().slice(256, 280 - 256).fill(7);
data.span().slice(280, 288 - 280).fill(8);
code = CanonicalCode::from_bytes(data).value();
initialized = true;
return code;
}
const CanonicalCode& CanonicalCode::fixed_distance_codes()
{
static CanonicalCode code;
static bool initialized = false;
if (initialized)
return code;
Array<u8, 32> data;
data.span().fill(5);
code = CanonicalCode::from_bytes(data).value();
initialized = true;
return code;
}
Optional<CanonicalCode> CanonicalCode::from_bytes(ReadonlyBytes bytes)
{
// FIXME: I can't quite follow the algorithm here, but it seems to work.
CanonicalCode code;
auto next_code = 0;
for (size_t code_length = 1; code_length <= 15; ++code_length) {
next_code <<= 1;
auto start_bit = 1 << code_length;
for (size_t symbol = 0; symbol < bytes.size(); ++symbol) {
if (bytes[symbol] != code_length)
continue;
if (next_code > start_bit)
return {};
code.m_symbol_codes.append(start_bit | next_code);
code.m_symbol_values.append(symbol);
next_code++;
}
}
if (next_code != (1 << 15)) {
return {};
}
return code;
}
u32 CanonicalCode::read_symbol(InputBitStream& stream) const
{
u32 code_bits = 1;
for (;;) {
code_bits = code_bits << 1 | stream.read_bits(1);
// FIXME: This seems really inefficient, this could be an index into an array instead.
size_t index;
if (AK::binary_search(m_symbol_codes.span(), code_bits, AK::integral_compare<u32>, &index))
return m_symbol_values[index];
}
}
DeflateDecompressor::CompressedBlock::CompressedBlock(DeflateDecompressor& decompressor, CanonicalCode literal_codes, Optional<CanonicalCode> distance_codes)
: m_decompressor(decompressor)
, m_literal_codes(literal_codes)
, m_distance_codes(distance_codes)
{
}
bool DeflateDecompressor::CompressedBlock::try_read_more()
{
if (m_eof == true)
return false;
const auto symbol = m_literal_codes.read_symbol(m_decompressor.m_input_stream);
if (symbol < 256) {
m_decompressor.m_output_stream << static_cast<u8>(symbol);
return true;
} else if (symbol == 256) {
m_eof = true;
return false;
} else {
if (!m_distance_codes.has_value()) {
m_decompressor.set_fatal_error();
return false;
}
const auto length = m_decompressor.decode_length(symbol);
const auto distance = m_decompressor.decode_distance(m_distance_codes.value().read_symbol(m_decompressor.m_input_stream));
for (size_t idx = 0; idx < length; ++idx) {
u8 byte = 0;
m_decompressor.m_output_stream.read({ &byte, sizeof(byte) }, distance);
m_decompressor.m_output_stream << byte;
}
return true;
}
}
DeflateDecompressor::UncompressedBlock::UncompressedBlock(DeflateDecompressor& decompressor, size_t length)
: m_decompressor(decompressor)
, m_bytes_remaining(length)
{
}
bool DeflateDecompressor::UncompressedBlock::try_read_more()
{
if (m_bytes_remaining == 0)
return false;
const auto nread = min(m_bytes_remaining, m_decompressor.m_output_stream.remaining_contigous_space());
m_bytes_remaining -= nread;
m_decompressor.m_input_stream >> m_decompressor.m_output_stream.reserve_contigous_space(nread);
return true;
}
DeflateDecompressor::DeflateDecompressor(InputStream& stream)
: m_input_stream(stream)
{
}
DeflateDecompressor::~DeflateDecompressor()
{
if (m_state == State::ReadingCompressedBlock)
m_compressed_block.~CompressedBlock();
if (m_state == State::ReadingUncompressedBlock)
m_uncompressed_block.~UncompressedBlock();
}
size_t DeflateDecompressor::read(Bytes bytes)
{
if (has_any_error())
return 0;
if (m_state == State::Idle) {
if (m_read_final_bock)
return 0;
m_read_final_bock = m_input_stream.read_bit();
const auto block_type = m_input_stream.read_bits(2);
if (block_type == 0b00) {
m_input_stream.align_to_byte_boundary();
LittleEndian<u16> length, negated_length;
m_input_stream >> length >> negated_length;
if ((length ^ 0xffff) != negated_length) {
set_fatal_error();
return 0;
}
m_state = State::ReadingUncompressedBlock;
new (&m_uncompressed_block) UncompressedBlock(*this, length);
return read(bytes);
}
if (block_type == 0b01) {
m_state = State::ReadingCompressedBlock;
new (&m_compressed_block) CompressedBlock(*this, CanonicalCode::fixed_literal_codes(), CanonicalCode::fixed_distance_codes());
return read(bytes);
}
if (block_type == 0b10) {
CanonicalCode literal_codes;
Optional<CanonicalCode> distance_codes;
decode_codes(literal_codes, distance_codes);
m_state = State::ReadingCompressedBlock;
new (&m_compressed_block) CompressedBlock(*this, literal_codes, distance_codes);
return read(bytes);
}
set_fatal_error();
return 0;
}
if (m_state == State::ReadingCompressedBlock) {
auto nread = m_output_stream.read(bytes);
while (nread < bytes.size() && m_compressed_block.try_read_more()) {
nread += m_output_stream.read(bytes.slice(nread));
}
if (nread == bytes.size())
return nread;
m_compressed_block.~CompressedBlock();
m_state = State::Idle;
return nread + read(bytes.slice(nread));
}
if (m_state == State::ReadingUncompressedBlock) {
auto nread = m_output_stream.read(bytes);
while (nread < bytes.size() && m_uncompressed_block.try_read_more()) {
nread += m_output_stream.read(bytes.slice(nread));
}
if (nread == bytes.size())
return nread;
m_uncompressed_block.~UncompressedBlock();
m_state = State::Idle;
return nread + read(bytes.slice(nread));
}
ASSERT_NOT_REACHED();
}
bool DeflateDecompressor::read_or_error(Bytes bytes)
{
if (read(bytes) < bytes.size()) {
set_fatal_error();
return false;
}
return true;
}
bool DeflateDecompressor::discard_or_error(size_t count)
{
u8 buffer[4096];
size_t ndiscarded = 0;
while (ndiscarded < count) {
if (unreliable_eof()) {
set_fatal_error();
return false;
}
ndiscarded += read({ buffer, min<size_t>(count - ndiscarded, 4096) });
}
return true;
}
bool DeflateDecompressor::unreliable_eof() const { return m_state == State::Idle && m_read_final_bock; }
Optional<ByteBuffer> DeflateDecompressor::decompress_all(ReadonlyBytes bytes)
{
InputMemoryStream memory_stream { bytes };
DeflateDecompressor deflate_stream { memory_stream };
DuplexMemoryStream output_stream;
u8 buffer[4096];
while (!deflate_stream.has_any_error() && !deflate_stream.unreliable_eof()) {
const auto nread = deflate_stream.read({ buffer, sizeof(buffer) });
output_stream.write_or_error({ buffer, nread });
}
if (deflate_stream.handle_any_error())
return {};
return output_stream.copy_into_contiguous_buffer();
}
u32 DeflateDecompressor::decode_length(u32 symbol)
{
// FIXME: I can't quite follow the algorithm here, but it seems to work.
if (symbol <= 264)
return symbol - 254;
if (symbol <= 284) {
auto extra_bits = (symbol - 261) / 4;
return (((symbol - 265) % 4 + 4) << extra_bits) + 3 + m_input_stream.read_bits(extra_bits);
}
if (symbol == 285)
return 258;
ASSERT_NOT_REACHED();
}
u32 DeflateDecompressor::decode_distance(u32 symbol)
{
// FIXME: I can't quite follow the algorithm here, but it seems to work.
if (symbol <= 3)
return symbol + 1;
if (symbol <= 29) {
auto extra_bits = (symbol / 2) - 1;
return ((symbol % 2 + 2) << extra_bits) + 1 + m_input_stream.read_bits(extra_bits);
}
ASSERT_NOT_REACHED();
}
void DeflateDecompressor::decode_codes(CanonicalCode& literal_code, Optional<CanonicalCode>& distance_code)
{
auto literal_code_count = m_input_stream.read_bits(5) + 257;
auto distance_code_count = m_input_stream.read_bits(5) + 1;
auto code_length_count = m_input_stream.read_bits(4) + 4;
// First we have to extract the code lengths of the code that was used to encode the code lengths of
// the code that was used to encode the block.
u8 code_lengths_code_lengths[19] = { 0 };
for (size_t i = 0; i < code_length_count; ++i) {
static const size_t indices[] { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
code_lengths_code_lengths[indices[i]] = m_input_stream.read_bits(3);
}
// Now we can extract the code that was used to encode the code lengths of the code that was used to
// encode the block.
auto code_length_code_result = CanonicalCode::from_bytes({ code_lengths_code_lengths, sizeof(code_lengths_code_lengths) });
if (!code_length_code_result.has_value()) {
set_fatal_error();
return;
}
const auto code_length_code = code_length_code_result.value();
// Next we extract the code lengths of the code that was used to encode the block.
Vector<u8> code_lengths;
while (code_lengths.size() < literal_code_count + distance_code_count) {
auto symbol = code_length_code.read_symbol(m_input_stream);
if (symbol <= 15) {
code_lengths.append(static_cast<u8>(symbol));
continue;
} else if (symbol == 17) {
auto nrepeat = 3 + m_input_stream.read_bits(3);
for (size_t j = 0; j < nrepeat; ++j)
code_lengths.append(0);
continue;
} else if (symbol == 18) {
auto nrepeat = 11 + m_input_stream.read_bits(7);
for (size_t j = 0; j < nrepeat; ++j)
code_lengths.append(0);
continue;
} else {
ASSERT(symbol == 16);
if (code_lengths.is_empty()) {
set_fatal_error();
return;
}
auto nrepeat = 3 + m_input_stream.read_bits(2);
for (size_t j = 0; j < nrepeat; ++j)
code_lengths.append(code_lengths.last());
}
}
if (code_lengths.size() != literal_code_count + distance_code_count) {
set_fatal_error();
return;
}
// Now we extract the code that was used to encode literals and lengths in the block.
auto literal_code_result = CanonicalCode::from_bytes(code_lengths.span().trim(literal_code_count));
if (!literal_code_result.has_value()) {
set_fatal_error();
return;
}
literal_code = literal_code_result.value();
// Now we extract the code that was used to encode distances in the block.
if (distance_code_count == 1) {
auto length = code_lengths[literal_code_count];
if (length == 0) {
return;
} else if (length != 1) {
set_fatal_error();
return;
}
}
auto distance_code_result = CanonicalCode::from_bytes(code_lengths.span().slice(literal_code_count));
if (!distance_code_result.has_value()) {
set_fatal_error();
return;
}
distance_code = distance_code_result.value();
}
}