ladybird/Libraries/LibJS/AST.cpp
Linus Groh 9c8d390682 LibJS: Refactor Accessor
This changes Accessor's m_{getter,setter} from Value to Function* which
seems like a better API to me - a getter/setter must either be a
function or missing, and the creation of an accessor with other values
must be prevented by the parser and Object.defineProperty() anyway.

Also add Accessor::set_{getter,setter}() so we can reuse an already
created accessor when evaluating an ObjectExpression with getter/setter
shorthand syntax.
2020-05-24 18:49:58 +02:00

1606 lines
48 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Function.h>
#include <AK/HashMap.h>
#include <AK/ScopeGuard.h>
#include <AK/StringBuilder.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/MarkedValueList.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/ScriptFunction.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/StringObject.h>
#include <stdio.h>
namespace JS {
static void update_function_name(Value& value, const FlyString& name)
{
if (!value.is_object())
return;
auto& object = value.as_object();
if (object.is_function()) {
auto& function = static_cast<ScriptFunction&>(object);
if (function.name().is_empty())
function.set_name(name);
} else if (object.is_array()) {
auto& array = static_cast<Array&>(object);
for (size_t i = 0; i < array.elements().size(); ++i) {
update_function_name(array.elements()[i], name);
}
}
}
Value ScopeNode::execute(Interpreter& interpreter) const
{
return interpreter.run(*this);
}
Value FunctionDeclaration::execute(Interpreter& interpreter) const
{
auto* function = ScriptFunction::create(interpreter.global_object(), name(), body(), parameters(), function_length(), interpreter.current_environment());
interpreter.set_variable(name(), function);
return js_undefined();
}
Value FunctionExpression::execute(Interpreter& interpreter) const
{
return ScriptFunction::create(interpreter.global_object(), name(), body(), parameters(), function_length(), interpreter.current_environment());
}
Value ExpressionStatement::execute(Interpreter& interpreter) const
{
return m_expression->execute(interpreter);
}
CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter) const
{
if (is_new_expression()) {
// Computing |this| is irrelevant for "new" expression.
return { js_undefined(), m_callee->execute(interpreter) };
}
if (m_callee->is_member_expression()) {
auto& member_expression = static_cast<const MemberExpression&>(*m_callee);
auto object_value = member_expression.object().execute(interpreter);
if (interpreter.exception())
return {};
auto* this_value = object_value.to_object(interpreter);
if (interpreter.exception())
return {};
auto callee = this_value->get(member_expression.computed_property_name(interpreter)).value_or(js_undefined());
return { this_value, callee };
}
return { &interpreter.global_object(), m_callee->execute(interpreter) };
}
Value CallExpression::execute(Interpreter& interpreter) const
{
auto [this_value, callee] = compute_this_and_callee(interpreter);
if (interpreter.exception())
return {};
ASSERT(!callee.is_empty());
if (!callee.is_function()
|| (is_new_expression() && (callee.as_object().is_native_function() && !static_cast<NativeFunction&>(callee.as_object()).has_constructor()))) {
String error_message;
auto call_type = is_new_expression() ? "constructor" : "function";
if (m_callee->is_identifier() || m_callee->is_member_expression()) {
String expression_string;
if (m_callee->is_identifier())
expression_string = static_cast<const Identifier&>(*m_callee).string();
else
expression_string = static_cast<const MemberExpression&>(*m_callee).to_string_approximation();
error_message = String::format("%s is not a %s (evaluated from '%s')", callee.to_string_without_side_effects().characters(), call_type, expression_string.characters());
} else {
error_message = String::format("%s is not a %s", callee.to_string_without_side_effects().characters(), call_type);
}
return interpreter.throw_exception<TypeError>(error_message);
}
auto& function = callee.as_function();
MarkedValueList arguments(interpreter.heap());
arguments.values().append(function.bound_arguments());
for (size_t i = 0; i < m_arguments.size(); ++i) {
auto value = m_arguments[i].value->execute(interpreter);
if (interpreter.exception())
return {};
if (m_arguments[i].is_spread) {
// FIXME: Support generic iterables
Vector<Value> iterables;
if (value.is_string()) {
for (auto ch : value.as_string().string())
iterables.append(Value(js_string(interpreter, String::format("%c", ch))));
} else if (value.is_object() && value.as_object().is_array()) {
iterables = static_cast<const Array&>(value.as_object()).elements();
} else if (value.is_object() && value.as_object().is_string_object()) {
for (auto ch : static_cast<const StringObject&>(value.as_object()).primitive_string().string())
iterables.append(Value(js_string(interpreter, String::format("%c", ch))));
} else {
interpreter.throw_exception<TypeError>(String::format("%s is not iterable", value.to_string_without_side_effects().characters()));
}
for (auto& value : iterables)
arguments.append(value);
} else {
arguments.append(value);
}
}
auto& call_frame = interpreter.push_call_frame();
call_frame.function_name = function.name();
call_frame.arguments = arguments.values();
call_frame.environment = function.create_environment();
Object* new_object = nullptr;
Value result;
if (is_new_expression()) {
new_object = Object::create_empty(interpreter, interpreter.global_object());
auto prototype = function.get("prototype");
if (prototype.is_object())
new_object->set_prototype(&prototype.as_object());
call_frame.this_value = new_object;
result = function.construct(interpreter);
} else {
call_frame.this_value = function.bound_this().value_or(this_value);
result = function.call(interpreter);
}
interpreter.pop_call_frame();
if (interpreter.exception())
return {};
if (is_new_expression()) {
if (result.is_object())
return result;
return new_object;
}
return result;
}
Value ReturnStatement::execute(Interpreter& interpreter) const
{
auto value = argument() ? argument()->execute(interpreter) : js_undefined();
if (interpreter.exception())
return {};
interpreter.unwind(ScopeType::Function);
return value;
}
Value IfStatement::execute(Interpreter& interpreter) const
{
auto predicate_result = m_predicate->execute(interpreter);
if (interpreter.exception())
return {};
if (predicate_result.to_boolean())
return interpreter.run(*m_consequent);
if (m_alternate)
return interpreter.run(*m_alternate);
return js_undefined();
}
Value WhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
while (m_test->execute(interpreter).to_boolean()) {
if (interpreter.exception())
return {};
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DoWhileStatement::execute(Interpreter& interpreter) const
{
Value last_value = js_undefined();
do {
if (interpreter.exception())
return {};
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
} while (m_test->execute(interpreter).to_boolean());
return last_value;
}
Value ForStatement::execute(Interpreter& interpreter) const
{
RefPtr<BlockStatement> wrapper;
if (m_init && m_init->is_variable_declaration() && static_cast<const VariableDeclaration*>(m_init.ptr())->declaration_kind() != DeclarationKind::Var) {
wrapper = create_ast_node<BlockStatement>();
NonnullRefPtrVector<VariableDeclaration> decls;
decls.append(*static_cast<const VariableDeclaration*>(m_init.ptr()));
wrapper->add_variables(decls);
interpreter.enter_scope(*wrapper, {}, ScopeType::Block);
}
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
Value last_value = js_undefined();
if (m_init) {
m_init->execute(interpreter);
if (interpreter.exception())
return {};
}
if (m_test) {
while (true) {
auto test_result = m_test->execute(interpreter);
if (interpreter.exception())
return {};
if (!test_result.to_boolean())
break;
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter);
if (interpreter.exception())
return {};
}
}
} else {
while (true) {
last_value = interpreter.run(*m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter);
if (interpreter.exception())
return {};
}
}
}
return last_value;
}
Value BinaryExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case BinaryOp::Addition:
return add(interpreter, lhs_result, rhs_result);
case BinaryOp::Subtraction:
return sub(interpreter, lhs_result, rhs_result);
case BinaryOp::Multiplication:
return mul(interpreter, lhs_result, rhs_result);
case BinaryOp::Division:
return div(interpreter, lhs_result, rhs_result);
case BinaryOp::Modulo:
return mod(interpreter, lhs_result, rhs_result);
case BinaryOp::Exponentiation:
return exp(interpreter, lhs_result, rhs_result);
case BinaryOp::TypedEquals:
return Value(strict_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::TypedInequals:
return Value(!strict_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::AbstractEquals:
return Value(abstract_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::AbstractInequals:
return Value(!abstract_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::GreaterThan:
return greater_than(interpreter, lhs_result, rhs_result);
case BinaryOp::GreaterThanEquals:
return greater_than_equals(interpreter, lhs_result, rhs_result);
case BinaryOp::LessThan:
return less_than(interpreter, lhs_result, rhs_result);
case BinaryOp::LessThanEquals:
return less_than_equals(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseAnd:
return bitwise_and(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseOr:
return bitwise_or(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseXor:
return bitwise_xor(interpreter, lhs_result, rhs_result);
case BinaryOp::LeftShift:
return left_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::RightShift:
return right_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::UnsignedRightShift:
return unsigned_right_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::In:
return in(interpreter, lhs_result, rhs_result);
case BinaryOp::InstanceOf:
return instance_of(interpreter, lhs_result, rhs_result);
}
ASSERT_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter) const
{
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case LogicalOp::And:
if (lhs_result.to_boolean()) {
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
case LogicalOp::Or: {
if (lhs_result.to_boolean())
return lhs_result;
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return rhs_result;
}
case LogicalOp::NullishCoalescing:
if (lhs_result.is_null() || lhs_result.is_undefined()) {
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
}
ASSERT_NOT_REACHED();
}
Reference Expression::to_reference(Interpreter&) const
{
return {};
}
Reference Identifier::to_reference(Interpreter& interpreter) const
{
return interpreter.get_reference(string());
}
Reference MemberExpression::to_reference(Interpreter& interpreter) const
{
auto object_value = m_object->execute(interpreter);
if (object_value.is_empty())
return {};
auto* object = object_value.to_object(interpreter);
if (!object)
return {};
auto property_name = computed_property_name(interpreter);
if (!property_name.is_valid())
return {};
return { object, property_name };
}
Value UnaryExpression::execute(Interpreter& interpreter) const
{
if (m_op == UnaryOp::Delete) {
auto reference = m_lhs->to_reference(interpreter);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
return Value(true);
// FIXME: Support deleting locals
ASSERT(!reference.is_local_variable());
if (reference.is_global_variable())
return interpreter.global_object().delete_property(reference.name());
auto* base_object = reference.base().to_object(interpreter);
if (!base_object)
return {};
return base_object->delete_property(reference.name());
}
auto lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
switch (m_op) {
case UnaryOp::BitwiseNot:
return bitwise_not(interpreter, lhs_result);
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
case UnaryOp::Plus:
return unary_plus(interpreter, lhs_result);
case UnaryOp::Minus:
return unary_minus(interpreter, lhs_result);
case UnaryOp::Typeof:
switch (lhs_result.type()) {
case Value::Type::Empty:
ASSERT_NOT_REACHED();
return {};
case Value::Type::Undefined:
return js_string(interpreter, "undefined");
case Value::Type::Null:
// yes, this is on purpose. yes, this is how javascript works.
// yes, it's silly.
return js_string(interpreter, "object");
case Value::Type::Number:
return js_string(interpreter, "number");
case Value::Type::String:
return js_string(interpreter, "string");
case Value::Type::Object:
if (lhs_result.is_function())
return js_string(interpreter, "function");
return js_string(interpreter, "object");
case Value::Type::Boolean:
return js_string(interpreter, "boolean");
case Value::Type::Symbol:
return js_string(interpreter, "symbol");
default:
ASSERT_NOT_REACHED();
}
case UnaryOp::Void:
return js_undefined();
case UnaryOp::Delete:
ASSERT_NOT_REACHED();
}
ASSERT_NOT_REACHED();
}
static void print_indent(int indent)
{
for (int i = 0; i < indent * 2; ++i)
putchar(' ');
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
printf("%s\n", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
if (!m_children.is_empty()) {
print_indent(indent + 1);
printf("(Children)\n");
for (auto& child : children())
child.dump(indent + 2);
}
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Addition:
op_string = "+";
break;
case BinaryOp::Subtraction:
op_string = "-";
break;
case BinaryOp::Multiplication:
op_string = "*";
break;
case BinaryOp::Division:
op_string = "/";
break;
case BinaryOp::Modulo:
op_string = "%";
break;
case BinaryOp::Exponentiation:
op_string = "**";
break;
case BinaryOp::TypedEquals:
op_string = "===";
break;
case BinaryOp::TypedInequals:
op_string = "!==";
break;
case BinaryOp::AbstractEquals:
op_string = "==";
break;
case BinaryOp::AbstractInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
case BinaryOp::UnsignedRightShift:
op_string = ">>>";
break;
case BinaryOp::In:
op_string = "in";
break;
case BinaryOp::InstanceOf:
op_string = "instanceof";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
case LogicalOp::NullishCoalescing:
op_string = "??";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
case UnaryOp::Plus:
op_string = "+";
break;
case UnaryOp::Minus:
op_string = "-";
break;
case UnaryOp::Typeof:
op_string = "typeof ";
break;
case UnaryOp::Void:
op_string = "void ";
break;
case UnaryOp::Delete:
op_string = "delete ";
break;
}
print_indent(indent);
printf("%s\n", class_name());
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
printf("CallExpression %s\n", is_new_expression() ? "[new]" : "");
m_callee->dump(indent + 1);
for (auto& argument : m_arguments)
argument.value->dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
printf("StringLiteral \"%s\"\n", m_value.characters());
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
printf("NumericLiteral %g\n", m_value);
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
printf("BooleanLiteral %s\n", m_value ? "true" : "false");
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
printf("null\n");
}
void FunctionNode::dump(int indent, const char* class_name) const
{
print_indent(indent);
printf("%s '%s'\n", class_name, name().characters());
if (!m_parameters.is_empty()) {
print_indent(indent + 1);
printf("(Parameters)\n");
for (auto& parameter : m_parameters) {
print_indent(indent + 2);
if (parameter.is_rest)
printf("...");
printf("%s\n", parameter.name.characters());
if (parameter.default_value)
parameter.default_value->dump(indent + 3);
}
}
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
print_indent(indent + 1);
printf("(Body)\n");
body().dump(indent + 2);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("If\n");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
printf("Else\n");
alternate()->dump(indent + 1);
}
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("While\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void DoWhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("DoWhile\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("For\n");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter) const
{
auto value = interpreter.get_variable(string());
if (value.is_empty())
return interpreter.throw_exception<ReferenceError>(String::format("'%s' not known", string().characters()));
return value;
}
void Identifier::dump(int indent) const
{
print_indent(indent);
printf("Identifier \"%s\"\n", m_string.characters());
}
void SpreadExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_target->dump(indent + 1);
}
Value SpreadExpression::execute(Interpreter& interpreter) const
{
return m_target->execute(interpreter);
}
Value ThisExpression::execute(Interpreter& interpreter) const
{
return interpreter.this_value();
}
void ThisExpression::dump(int indent) const
{
ASTNode::dump(indent);
}
Value AssignmentExpression::execute(Interpreter& interpreter) const
{
auto rhs_result = m_rhs->execute(interpreter);
if (interpreter.exception())
return {};
Value lhs_result;
switch (m_op) {
case AssignmentOp::Assignment:
break;
case AssignmentOp::AdditionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = add(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::SubtractionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = sub(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::MultiplicationAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = mul(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::DivisionAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = div(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::ModuloAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = mod(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::ExponentiationAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = exp(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseAndAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = bitwise_and(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseOrAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = bitwise_or(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseXorAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = bitwise_xor(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::LeftShiftAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = left_shift(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::RightShiftAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = right_shift(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::UnsignedRightShiftAssignment:
lhs_result = m_lhs->execute(interpreter);
if (interpreter.exception())
return {};
rhs_result = unsigned_right_shift(interpreter, lhs_result, rhs_result);
break;
}
if (interpreter.exception())
return {};
auto reference = m_lhs->to_reference(interpreter);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
return interpreter.throw_exception<ReferenceError>("Invalid left-hand side in assignment");
update_function_name(rhs_result, reference.name().as_string());
reference.put(interpreter, rhs_result);
if (interpreter.exception())
return {};
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter) const
{
auto reference = m_argument->to_reference(interpreter);
if (interpreter.exception())
return {};
auto old_value = reference.get(interpreter);
if (interpreter.exception())
return {};
old_value = old_value.to_number(interpreter);
if (interpreter.exception())
return {};
int op_result = 0;
switch (m_op) {
case UpdateOp::Increment:
op_result = 1;
break;
case UpdateOp::Decrement:
op_result = -1;
break;
default:
ASSERT_NOT_REACHED();
}
auto new_value = Value(old_value.as_double() + op_result);
reference.put(interpreter, new_value);
if (interpreter.exception())
return {};
return m_prefixed ? new_value : old_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
case AssignmentOp::ModuloAssignment:
op_string = "%=";
break;
case AssignmentOp::ExponentiationAssignment:
op_string = "**=";
break;
case AssignmentOp::BitwiseAndAssignment:
op_string = "&=";
break;
case AssignmentOp::BitwiseOrAssignment:
op_string = "|=";
break;
case AssignmentOp::BitwiseXorAssignment:
op_string = "^=";
break;
case AssignmentOp::LeftShiftAssignment:
op_string = "<<=";
break;
case AssignmentOp::RightShiftAssignment:
op_string = ">>=";
break;
case AssignmentOp::UnsignedRightShiftAssignment:
op_string = ">>>=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_prefixed)
printf("%s\n", op_string);
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
printf("%s\n", op_string);
}
}
Value VariableDeclaration::execute(Interpreter& interpreter) const
{
for (auto& declarator : m_declarations) {
if (auto* init = declarator.init()) {
auto initalizer_result = init->execute(interpreter);
if (interpreter.exception())
return {};
auto variable_name = declarator.id().string();
update_function_name(initalizer_result, variable_name);
interpreter.set_variable(variable_name, initalizer_result, true);
}
}
return js_undefined();
}
Value VariableDeclarator::execute(Interpreter&) const
{
// NOTE: This node is handled by VariableDeclaration.
ASSERT_NOT_REACHED();
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_kind_string = nullptr;
switch (m_declaration_kind) {
case DeclarationKind::Let:
declaration_kind_string = "Let";
break;
case DeclarationKind::Var:
declaration_kind_string = "Var";
break;
case DeclarationKind::Const:
declaration_kind_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", declaration_kind_string);
for (auto& declarator : m_declarations)
declarator.dump(indent + 1);
}
void VariableDeclarator::dump(int indent) const
{
ASTNode::dump(indent);
m_id->dump(indent + 1);
if (m_init)
m_init->dump(indent + 1);
}
void ObjectProperty::dump(int indent) const
{
ASTNode::dump(indent);
m_key->dump(indent + 1);
m_value->dump(indent + 1);
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& property : m_properties) {
property.dump(indent + 1);
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectProperty::execute(Interpreter&) const
{
// NOTE: ObjectProperty execution is handled by ObjectExpression.
ASSERT_NOT_REACHED();
}
Value ObjectExpression::execute(Interpreter& interpreter) const
{
auto* object = Object::create_empty(interpreter, interpreter.global_object());
for (auto& property : m_properties) {
auto key_result = property.key().execute(interpreter);
if (interpreter.exception())
return {};
if (property.type() == ObjectProperty::Type::Spread) {
if (key_result.is_array()) {
auto& array_to_spread = static_cast<Array&>(key_result.as_object());
auto& elements = array_to_spread.elements();
for (size_t i = 0; i < elements.size(); ++i) {
auto element = elements.at(i);
if (!element.is_empty())
object->put_by_index(i, element);
}
} else if (key_result.is_object()) {
auto& obj_to_spread = key_result.as_object();
for (auto& it : obj_to_spread.shape().property_table_ordered()) {
if (it.value.attributes & Attribute::Enumerable)
object->put(it.key, obj_to_spread.get(it.key));
}
} else if (key_result.is_string()) {
auto& str_to_spread = key_result.as_string().string();
for (size_t i = 0; i < str_to_spread.length(); i++) {
object->put_by_index(i, js_string(interpreter, str_to_spread.substring(i, 1)));
}
}
continue;
}
auto key = key_result.to_string(interpreter);
if (interpreter.exception())
return {};
auto value = property.value().execute(interpreter);
if (interpreter.exception())
return {};
String name = key;
if (property.type() == ObjectProperty::Type::Getter) {
name = String::format("get %s", key.characters());
} else if (property.type() == ObjectProperty::Type::Setter) {
name = String::format("set %s", key.characters());
}
update_function_name(value, name);
if (property.type() == ObjectProperty::Type::Getter || property.type() == ObjectProperty::Type::Setter) {
ASSERT(value.is_function());
Accessor* accessor { nullptr };
auto property_metadata = object->shape().lookup(key);
if (property_metadata.has_value()) {
auto existing_property = object->get_direct(property_metadata.value().offset);
if (existing_property.is_accessor())
accessor = &existing_property.as_accessor();
}
if (!accessor) {
accessor = Accessor::create(interpreter, nullptr, nullptr);
object->put_own_property(*object, key, Attribute::Configurable | Attribute::Enumerable, accessor, Object::PutOwnPropertyMode::DefineProperty);
}
if (property.type() == ObjectProperty::Type::Getter)
accessor->set_getter(&value.as_function());
else
accessor->set_setter(&value.as_function());
} else {
object->put(key, value);
}
}
return object;
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
printf("%s (computed=%s)\n", class_name(), is_computed() ? "true" : "false");
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
PropertyName MemberExpression::computed_property_name(Interpreter& interpreter) const
{
if (!is_computed()) {
ASSERT(m_property->is_identifier());
return PropertyName(static_cast<const Identifier&>(*m_property).string());
}
auto index = m_property->execute(interpreter);
if (interpreter.exception())
return {};
ASSERT(!index.is_empty());
if (index.is_integer() && index.as_i32() >= 0)
return PropertyName(index.as_i32());
auto index_string = index.to_string(interpreter);
if (interpreter.exception())
return {};
return PropertyName(index_string);
}
String MemberExpression::to_string_approximation() const
{
String object_string = "<object>";
if (m_object->is_identifier())
object_string = static_cast<const Identifier&>(*m_object).string();
if (is_computed())
return String::format("%s[<computed>]", object_string.characters());
ASSERT(m_property->is_identifier());
return String::format("%s.%s", object_string.characters(), static_cast<const Identifier&>(*m_property).string().characters());
}
Value MemberExpression::execute(Interpreter& interpreter) const
{
auto object_value = m_object->execute(interpreter);
if (interpreter.exception())
return {};
auto* object_result = object_value.to_object(interpreter);
if (interpreter.exception())
return {};
return object_result->get(computed_property_name(interpreter)).value_or(js_undefined());
}
Value StringLiteral::execute(Interpreter& interpreter) const
{
return js_string(interpreter, m_value);
}
Value NumericLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value BooleanLiteral::execute(Interpreter&) const
{
return Value(m_value);
}
Value NullLiteral::execute(Interpreter&) const
{
return js_null();
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
if (element) {
element->dump(indent + 1);
} else {
print_indent(indent + 1);
printf("<empty>\n");
}
}
}
Value ArrayExpression::execute(Interpreter& interpreter) const
{
auto* array = Array::create(interpreter.global_object());
for (auto& element : m_elements) {
auto value = Value();
if (element) {
value = element->execute(interpreter);
if (interpreter.exception())
return {};
if (element->is_spread_expression()) {
// FIXME: Support arbitrary iterables
if (value.is_array()) {
auto& array_to_spread = static_cast<Array&>(value.as_object());
for (auto& it : array_to_spread.elements()) {
if (it.is_empty()) {
array->elements().append(js_undefined());
} else {
array->elements().append(it);
}
}
continue;
}
if (value.is_string() || (value.is_object() && value.as_object().is_string_object())) {
String string_to_spread;
if (value.is_string())
string_to_spread = value.as_string().string();
else
string_to_spread = static_cast<const StringObject&>(value.as_object()).primitive_string().string();
for (size_t i = 0; i < string_to_spread.length(); ++i)
array->elements().append(js_string(interpreter, string_to_spread.substring(i, 1)));
continue;
}
interpreter.throw_exception<TypeError>(String::format("%s is not iterable", value.to_string_without_side_effects().characters()));
return {};
}
}
array->elements().append(value);
}
return array;
}
void TemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value TemplateLiteral::execute(Interpreter& interpreter) const
{
StringBuilder string_builder;
for (auto& expression : m_expressions) {
auto expr = expression.execute(interpreter);
if (interpreter.exception())
return {};
auto string = expr.to_string(interpreter);
if (interpreter.exception())
return {};
string_builder.append(string);
}
return js_string(interpreter, string_builder.build());
}
void TaggedTemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
printf("(Tag)\n");
m_tag->dump(indent + 2);
print_indent(indent + 1);
printf("(Template Literal)\n");
m_template_literal->dump(indent + 2);
}
Value TaggedTemplateLiteral::execute(Interpreter& interpreter) const
{
auto tag = m_tag->execute(interpreter);
if (interpreter.exception())
return {};
if (!tag.is_function()) {
interpreter.throw_exception<TypeError>(String::format("%s is not a function", tag.to_string_without_side_effects().characters()));
return {};
}
auto& tag_function = tag.as_function();
auto& expressions = m_template_literal->expressions();
auto* strings = Array::create(interpreter.global_object());
MarkedValueList arguments(interpreter.heap());
arguments.append(strings);
for (size_t i = 0; i < expressions.size(); ++i) {
auto value = expressions[i].execute(interpreter);
if (interpreter.exception())
return {};
// tag`${foo}` -> "", foo, "" -> tag(["", ""], foo)
// tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
if (i % 2 == 0)
strings->elements().append(value);
else
arguments.append(value);
}
auto* raw_strings = Array::create(interpreter.global_object());
for (auto& raw_string : m_template_literal->raw_strings()) {
auto value = raw_string.execute(interpreter);
if (interpreter.exception())
return {};
raw_strings->elements().append(value);
}
strings->put("raw", raw_strings, 0);
return interpreter.call(tag_function, js_undefined(), move(arguments));
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Block)\n");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
printf("(Handler)\n");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
printf("(Finalizer)\n");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
printf("CatchClause");
if (!m_parameter.is_null())
printf(" (%s)", m_parameter.characters());
printf("\n");
body().dump(indent + 1);
}
void ThrowStatement::dump(int indent) const
{
ASTNode::dump(indent);
argument().dump(indent + 1);
}
Value TryStatement::execute(Interpreter& interpreter) const
{
interpreter.run(block(), {}, ScopeType::Try);
if (auto* exception = interpreter.exception()) {
if (m_handler) {
interpreter.clear_exception();
ArgumentVector arguments { { m_handler->parameter(), exception->value() } };
interpreter.run(m_handler->body(), move(arguments));
}
}
if (m_finalizer)
m_finalizer->execute(interpreter);
return js_undefined();
}
Value CatchClause::execute(Interpreter&) const
{
// NOTE: CatchClause execution is handled by TryStatement.
ASSERT_NOT_REACHED();
return {};
}
Value ThrowStatement::execute(Interpreter& interpreter) const
{
auto value = m_argument->execute(interpreter);
if (interpreter.exception())
return {};
return interpreter.throw_exception(value);
}
Value SwitchStatement::execute(Interpreter& interpreter) const
{
auto discriminant_result = m_discriminant->execute(interpreter);
if (interpreter.exception())
return {};
bool falling_through = false;
for (auto& switch_case : m_cases) {
if (!falling_through && switch_case.test()) {
auto test_result = switch_case.test()->execute(interpreter);
if (interpreter.exception())
return {};
if (!strict_eq(interpreter, discriminant_result, test_result))
continue;
}
falling_through = true;
for (auto& statement : switch_case.consequent()) {
statement.execute(interpreter);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Breakable)) {
interpreter.stop_unwind();
return {};
}
return {};
}
}
}
return js_undefined();
}
Value SwitchCase::execute(Interpreter& interpreter) const
{
(void)interpreter;
return {};
}
Value BreakStatement::execute(Interpreter& interpreter) const
{
interpreter.unwind(ScopeType::Breakable);
return js_undefined();
}
Value ContinueStatement::execute(Interpreter& interpreter) const
{
interpreter.unwind(ScopeType::Continuable);
return js_undefined();
}
void SwitchStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_discriminant->dump(indent + 1);
for (auto& switch_case : m_cases) {
switch_case.dump(indent + 1);
}
}
void SwitchCase::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_test) {
printf("(Test)\n");
m_test->dump(indent + 2);
} else {
printf("(Default)\n");
}
print_indent(indent + 1);
printf("(Consequent)\n");
for (auto& statement : m_consequent)
statement.dump(indent + 2);
}
Value ConditionalExpression::execute(Interpreter& interpreter) const
{
auto test_result = m_test->execute(interpreter);
if (interpreter.exception())
return {};
Value result;
if (test_result.to_boolean()) {
result = m_consequent->execute(interpreter);
} else {
result = m_alternate->execute(interpreter);
}
if (interpreter.exception())
return {};
return result;
}
void ConditionalExpression::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
printf("(Test)\n");
m_test->dump(indent + 2);
print_indent(indent + 1);
printf("(Consequent)\n");
m_consequent->dump(indent + 2);
print_indent(indent + 1);
printf("(Alternate)\n");
m_alternate->dump(indent + 2);
}
void SequenceExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value SequenceExpression::execute(Interpreter& interpreter) const
{
Value last_value;
for (auto& expression : m_expressions) {
last_value = expression.execute(interpreter);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DebuggerStatement::execute(Interpreter&) const
{
dbg() << "Sorry, no JavaScript debugger available (yet)!";
return js_undefined();
}
void ScopeNode::add_variables(NonnullRefPtrVector<VariableDeclaration> variables)
{
m_variables.append(move(variables));
}
}