mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-25 17:10:23 +00:00
b4842d33bb
When a process crashes, we generate a coredump file and write it in /tmp/coredumps/. The coredump file is an ELF file of type ET_CORE. It contains a segment for every userspace memory region of the process, and an additional PT_NOTE segment that contains the registers state for each thread, and a additional data about memory regions (e.g their name).
1157 lines
38 KiB
C++
1157 lines
38 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/Demangle.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/Time.h>
|
|
#include <Kernel/Arch/i386/CPU.h>
|
|
#include <Kernel/FileSystem/FileDescription.h>
|
|
#include <Kernel/KSyms.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/Profiling.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/Thread.h>
|
|
#include <Kernel/ThreadTracer.h>
|
|
#include <Kernel/TimerQueue.h>
|
|
#include <Kernel/VM/MemoryManager.h>
|
|
#include <Kernel/VM/PageDirectory.h>
|
|
#include <Kernel/VM/ProcessPagingScope.h>
|
|
#include <LibC/signal_numbers.h>
|
|
#include <LibELF/Loader.h>
|
|
|
|
//#define SIGNAL_DEBUG
|
|
//#define THREAD_DEBUG
|
|
|
|
namespace Kernel {
|
|
|
|
Thread::Thread(NonnullRefPtr<Process> process)
|
|
: m_process(move(process))
|
|
, m_name(m_process->name())
|
|
{
|
|
if (m_process->m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0) {
|
|
// First thread gets TID == PID
|
|
m_tid = m_process->pid().value();
|
|
} else {
|
|
m_tid = Process::allocate_pid().value();
|
|
}
|
|
#ifdef THREAD_DEBUG
|
|
dbg() << "Created new thread " << m_process->name() << "(" << m_process->pid().value() << ":" << m_tid.value() << ")";
|
|
#endif
|
|
set_default_signal_dispositions();
|
|
m_fpu_state = (FPUState*)kmalloc_aligned<16>(sizeof(FPUState));
|
|
reset_fpu_state();
|
|
memset(&m_tss, 0, sizeof(m_tss));
|
|
m_tss.iomapbase = sizeof(TSS32);
|
|
|
|
// Only IF is set when a process boots.
|
|
m_tss.eflags = 0x0202;
|
|
|
|
if (m_process->is_kernel_process()) {
|
|
m_tss.cs = GDT_SELECTOR_CODE0;
|
|
m_tss.ds = GDT_SELECTOR_DATA0;
|
|
m_tss.es = GDT_SELECTOR_DATA0;
|
|
m_tss.fs = GDT_SELECTOR_PROC;
|
|
m_tss.ss = GDT_SELECTOR_DATA0;
|
|
m_tss.gs = 0;
|
|
} else {
|
|
m_tss.cs = GDT_SELECTOR_CODE3 | 3;
|
|
m_tss.ds = GDT_SELECTOR_DATA3 | 3;
|
|
m_tss.es = GDT_SELECTOR_DATA3 | 3;
|
|
m_tss.fs = GDT_SELECTOR_DATA3 | 3;
|
|
m_tss.ss = GDT_SELECTOR_DATA3 | 3;
|
|
m_tss.gs = GDT_SELECTOR_TLS | 3;
|
|
}
|
|
|
|
m_tss.cr3 = m_process->page_directory().cr3();
|
|
|
|
m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid.value()), Region::Access::Read | Region::Access::Write, false, true);
|
|
m_kernel_stack_region->set_stack(true);
|
|
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
|
|
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
|
|
|
|
if (m_process->is_kernel_process()) {
|
|
m_tss.esp = m_tss.esp0 = m_kernel_stack_top;
|
|
} else {
|
|
// Ring 3 processes get a separate stack for ring 0.
|
|
// The ring 3 stack will be assigned by exec().
|
|
m_tss.ss0 = GDT_SELECTOR_DATA0;
|
|
m_tss.esp0 = m_kernel_stack_top;
|
|
}
|
|
|
|
// We need to add another reference if we could successfully create
|
|
// all the resources needed for this thread. The reason for this is that
|
|
// we don't want to delete this thread after dropping the reference,
|
|
// it may still be running or scheduled to be run.
|
|
// The finalizer is responsible for dropping this reference once this
|
|
// thread is ready to be cleaned up.
|
|
ref();
|
|
|
|
if (m_process->pid() != 0)
|
|
Scheduler::init_thread(*this);
|
|
}
|
|
|
|
Thread::~Thread()
|
|
{
|
|
{
|
|
// We need to explicitly remove ourselves from the thread list
|
|
// here. We may get pre-empted in the middle of destructing this
|
|
// thread, which causes problems if the thread list is iterated.
|
|
// Specifically, if this is the last thread of a process, checking
|
|
// block conditions would access m_process, which would be in
|
|
// the middle of being destroyed.
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
g_scheduler_data->thread_list_for_state(m_state).remove(*this);
|
|
}
|
|
}
|
|
|
|
void Thread::unblock_from_blocker(Blocker& blocker)
|
|
{
|
|
auto do_unblock = [&]() {
|
|
ScopedSpinLock scheduler_lock(g_scheduler_lock);
|
|
ScopedSpinLock block_lock(m_block_lock);
|
|
if (m_blocker != &blocker)
|
|
return;
|
|
if (!should_be_stopped() && !is_stopped())
|
|
unblock();
|
|
};
|
|
if (Processor::current().in_irq()) {
|
|
Processor::current().deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
|
|
if (auto this_thread = self.strong_ref())
|
|
do_unblock();
|
|
});
|
|
} else {
|
|
do_unblock();
|
|
}
|
|
}
|
|
|
|
void Thread::unblock(u8 signal)
|
|
{
|
|
ASSERT(!Processor::current().in_irq());
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
ASSERT(m_block_lock.own_lock());
|
|
if (m_state != Thread::Blocked)
|
|
return;
|
|
ASSERT(m_blocker);
|
|
if (signal != 0) {
|
|
if (!m_blocker->can_be_interrupted() && !m_should_die)
|
|
return;
|
|
m_blocker->set_interrupted_by_signal(signal);
|
|
}
|
|
m_blocker = nullptr;
|
|
if (Thread::current() == this) {
|
|
set_state(Thread::Running);
|
|
return;
|
|
}
|
|
ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
|
|
set_state(Thread::Runnable);
|
|
}
|
|
|
|
void Thread::set_should_die()
|
|
{
|
|
if (m_should_die) {
|
|
#ifdef THREAD_DEBUG
|
|
dbg() << *this << " Should already die";
|
|
#endif
|
|
return;
|
|
}
|
|
ScopedCritical critical;
|
|
|
|
// Remember that we should die instead of returning to
|
|
// the userspace.
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
m_should_die = true;
|
|
|
|
// NOTE: Even the current thread can technically be in "Stopped"
|
|
// state! This is the case when another thread sent a SIGSTOP to
|
|
// it while it was running and it calls e.g. exit() before
|
|
// the scheduler gets involved again.
|
|
if (is_stopped()) {
|
|
// If we were stopped, we need to briefly resume so that
|
|
// the kernel stacks can clean up. We won't ever return back
|
|
// to user mode, though
|
|
ASSERT(!process().is_stopped());
|
|
resume_from_stopped();
|
|
}
|
|
if (is_blocked()) {
|
|
ScopedSpinLock block_lock(m_block_lock);
|
|
if (m_blocker) {
|
|
// We're blocked in the kernel.
|
|
m_blocker->set_interrupted_by_death();
|
|
unblock();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Thread::die_if_needed()
|
|
{
|
|
ASSERT(Thread::current() == this);
|
|
|
|
if (!m_should_die)
|
|
return;
|
|
|
|
unlock_process_if_locked();
|
|
|
|
ScopedCritical critical;
|
|
set_should_die();
|
|
|
|
// Flag a context switch. Because we're in a critical section,
|
|
// Scheduler::yield will actually only mark a pending scontext switch
|
|
// Simply leaving the critical section would not necessarily trigger
|
|
// a switch.
|
|
Scheduler::yield();
|
|
|
|
// Now leave the critical section so that we can also trigger the
|
|
// actual context switch
|
|
u32 prev_flags;
|
|
Processor::current().clear_critical(prev_flags, false);
|
|
dbg() << "die_if_needed returned from clear_critical!!! in irq: " << Processor::current().in_irq();
|
|
// We should never get here, but the scoped scheduler lock
|
|
// will be released by Scheduler::context_switch again
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
void Thread::exit(void* exit_value)
|
|
{
|
|
ASSERT(Thread::current() == this);
|
|
m_join_condition.thread_did_exit(exit_value);
|
|
set_should_die();
|
|
unlock_process_if_locked();
|
|
die_if_needed();
|
|
}
|
|
|
|
void Thread::yield_while_not_holding_big_lock()
|
|
{
|
|
ASSERT(!g_scheduler_lock.own_lock());
|
|
u32 prev_flags;
|
|
u32 prev_crit = Processor::current().clear_critical(prev_flags, true);
|
|
Scheduler::yield();
|
|
// NOTE: We may be on a different CPU now!
|
|
Processor::current().restore_critical(prev_crit, prev_flags);
|
|
}
|
|
|
|
void Thread::yield_without_holding_big_lock()
|
|
{
|
|
ASSERT(!g_scheduler_lock.own_lock());
|
|
bool did_unlock = unlock_process_if_locked();
|
|
// NOTE: Even though we call Scheduler::yield here, unless we happen
|
|
// to be outside of a critical section, the yield will be postponed
|
|
// until leaving it in relock_process.
|
|
Scheduler::yield();
|
|
relock_process(did_unlock);
|
|
}
|
|
|
|
bool Thread::unlock_process_if_locked()
|
|
{
|
|
return process().big_lock().force_unlock_if_locked();
|
|
}
|
|
|
|
void Thread::lock_process()
|
|
{
|
|
process().big_lock().lock();
|
|
}
|
|
|
|
void Thread::relock_process(bool did_unlock)
|
|
{
|
|
// Clearing the critical section may trigger the context switch
|
|
// flagged by calling Scheduler::donate_to or Scheduler::yield
|
|
// above. We have to do it this way because we intentionally
|
|
// leave the critical section here to be able to switch contexts.
|
|
u32 prev_flags;
|
|
u32 prev_crit = Processor::current().clear_critical(prev_flags, true);
|
|
|
|
if (did_unlock) {
|
|
// We've unblocked, relock the process if needed and carry on.
|
|
process().big_lock().lock();
|
|
}
|
|
|
|
// NOTE: We may be on a different CPU now!
|
|
Processor::current().restore_critical(prev_crit, prev_flags);
|
|
}
|
|
|
|
auto Thread::sleep(clockid_t clock_id, const timespec& duration, timespec* remaining_time) -> BlockResult
|
|
{
|
|
ASSERT(state() == Thread::Running);
|
|
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
|
|
}
|
|
|
|
auto Thread::sleep_until(clockid_t clock_id, const timespec& deadline) -> BlockResult
|
|
{
|
|
ASSERT(state() == Thread::Running);
|
|
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
|
|
}
|
|
|
|
const char* Thread::state_string() const
|
|
{
|
|
switch (state()) {
|
|
case Thread::Invalid:
|
|
return "Invalid";
|
|
case Thread::Runnable:
|
|
return "Runnable";
|
|
case Thread::Running:
|
|
return "Running";
|
|
case Thread::Dying:
|
|
return "Dying";
|
|
case Thread::Dead:
|
|
return "Dead";
|
|
case Thread::Stopped:
|
|
return "Stopped";
|
|
case Thread::Blocked: {
|
|
ScopedSpinLock block_lock(m_block_lock);
|
|
ASSERT(m_blocker != nullptr);
|
|
return m_blocker->state_string();
|
|
}
|
|
}
|
|
klog() << "Thread::state_string(): Invalid state: " << state();
|
|
ASSERT_NOT_REACHED();
|
|
return nullptr;
|
|
}
|
|
|
|
void Thread::finalize()
|
|
{
|
|
ASSERT(Thread::current() == g_finalizer);
|
|
ASSERT(Thread::current() != this);
|
|
|
|
#ifdef LOCK_DEBUG
|
|
ASSERT(!m_lock.own_lock());
|
|
if (lock_count() > 0) {
|
|
dbg() << "Thread " << *this << " leaking " << lock_count() << " Locks!";
|
|
ScopedSpinLock list_lock(m_holding_locks_lock);
|
|
for (auto& info : m_holding_locks_list)
|
|
dbg() << " - " << info.lock->name() << " @ " << info.lock << " locked at " << info.file << ":" << info.line << " count: " << info.count;
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
#endif
|
|
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
#ifdef THREAD_DEBUG
|
|
dbg() << "Finalizing thread " << *this;
|
|
#endif
|
|
set_state(Thread::State::Dead);
|
|
m_join_condition.thread_finalizing();
|
|
}
|
|
|
|
if (m_dump_backtrace_on_finalization)
|
|
dbg() << backtrace_impl();
|
|
|
|
kfree_aligned(m_fpu_state);
|
|
|
|
auto thread_cnt_before = m_process->m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
|
|
|
|
ASSERT(thread_cnt_before != 0);
|
|
if (thread_cnt_before == 1)
|
|
process().finalize();
|
|
}
|
|
|
|
void Thread::finalize_dying_threads()
|
|
{
|
|
ASSERT(Thread::current() == g_finalizer);
|
|
Vector<Thread*, 32> dying_threads;
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
|
|
if (thread.is_finalizable())
|
|
dying_threads.append(&thread);
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
for (auto* thread : dying_threads) {
|
|
thread->finalize();
|
|
|
|
// This thread will never execute again, drop the running reference
|
|
// NOTE: This may not necessarily drop the last reference if anything
|
|
// else is still holding onto this thread!
|
|
thread->unref();
|
|
}
|
|
}
|
|
|
|
bool Thread::tick()
|
|
{
|
|
++m_ticks;
|
|
if (tss().cs & 3)
|
|
++m_process->m_ticks_in_user;
|
|
else
|
|
++m_process->m_ticks_in_kernel;
|
|
return --m_ticks_left;
|
|
}
|
|
|
|
void Thread::check_dispatch_pending_signal()
|
|
{
|
|
auto result = DispatchSignalResult::Continue;
|
|
{
|
|
ScopedSpinLock scheduler_lock(g_scheduler_lock);
|
|
if (pending_signals_for_state()) {
|
|
ScopedSpinLock lock(m_lock);
|
|
result = dispatch_one_pending_signal();
|
|
}
|
|
}
|
|
|
|
switch (result) {
|
|
case DispatchSignalResult::Yield:
|
|
yield_while_not_holding_big_lock();
|
|
break;
|
|
case DispatchSignalResult::Terminate:
|
|
process().die();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool Thread::has_pending_signal(u8 signal) const
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
return pending_signals_for_state() & (1 << (signal - 1));
|
|
}
|
|
|
|
u32 Thread::pending_signals() const
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
return pending_signals_for_state();
|
|
}
|
|
|
|
u32 Thread::pending_signals_for_state() const
|
|
{
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1));
|
|
return m_state != Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask;
|
|
}
|
|
|
|
void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
|
|
{
|
|
ASSERT(signal < 32);
|
|
ScopedSpinLock scheduler_lock(g_scheduler_lock);
|
|
|
|
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
|
|
if (should_ignore_signal(signal)) {
|
|
#ifdef SIGNAL_DEBUG
|
|
dbg() << "Signal " << signal << " was ignored by " << process();
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
#ifdef SIGNAL_DEBUG
|
|
if (sender)
|
|
dbg() << "Signal: " << *sender << " sent " << signal << " to " << process();
|
|
else
|
|
dbg() << "Signal: Kernel sent " << signal << " to " << process();
|
|
#endif
|
|
|
|
m_pending_signals |= 1 << (signal - 1);
|
|
m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release);
|
|
|
|
if (m_state == Stopped) {
|
|
ScopedSpinLock lock(m_lock);
|
|
if (pending_signals_for_state()) {
|
|
#ifdef SIGNAL_DEBUG
|
|
dbg() << "Signal: Resuming stopped " << *this << " to deliver signal " << signal;
|
|
#endif
|
|
resume_from_stopped();
|
|
}
|
|
} else {
|
|
ScopedSpinLock block_lock(m_block_lock);
|
|
#ifdef SIGNAL_DEBUG
|
|
dbg() << "Signal: Unblocking " << *this << " to deliver signal " << signal;
|
|
#endif
|
|
unblock(signal);
|
|
}
|
|
}
|
|
|
|
u32 Thread::update_signal_mask(u32 signal_mask)
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
auto previous_signal_mask = m_signal_mask;
|
|
m_signal_mask = signal_mask;
|
|
m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release);
|
|
return previous_signal_mask;
|
|
}
|
|
|
|
u32 Thread::signal_mask() const
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
return m_signal_mask;
|
|
}
|
|
|
|
u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
auto previous_signal_mask = m_signal_mask;
|
|
if (block)
|
|
m_signal_mask &= ~signal_set;
|
|
else
|
|
m_signal_mask |= signal_set;
|
|
m_have_any_unmasked_pending_signals.store(pending_signals_for_state() & ~m_signal_mask, AK::memory_order_release);
|
|
return previous_signal_mask;
|
|
}
|
|
|
|
void Thread::clear_signals()
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
m_signal_mask = 0;
|
|
m_pending_signals = 0;
|
|
m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
|
|
}
|
|
|
|
// Certain exceptions, such as SIGSEGV and SIGILL, put a
|
|
// thread into a state where the signal handler must be
|
|
// invoked immediately, otherwise it will continue to fault.
|
|
// This function should be used in an exception handler to
|
|
// ensure that when the thread resumes, it's executing in
|
|
// the appropriate signal handler.
|
|
void Thread::send_urgent_signal_to_self(u8 signal)
|
|
{
|
|
ASSERT(Thread::current() == this);
|
|
DispatchSignalResult result;
|
|
{
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
result = dispatch_signal(signal);
|
|
}
|
|
if (result == DispatchSignalResult::Yield)
|
|
yield_without_holding_big_lock();
|
|
}
|
|
|
|
DispatchSignalResult Thread::dispatch_one_pending_signal()
|
|
{
|
|
ASSERT(m_lock.own_lock());
|
|
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
|
|
if (signal_candidates == 0)
|
|
return DispatchSignalResult::Continue;
|
|
|
|
u8 signal = 1;
|
|
for (; signal < 32; ++signal) {
|
|
if (signal_candidates & (1 << (signal - 1))) {
|
|
break;
|
|
}
|
|
}
|
|
return dispatch_signal(signal);
|
|
}
|
|
|
|
DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal)
|
|
{
|
|
ASSERT(signal != 0);
|
|
ScopedSpinLock scheduler_lock(g_scheduler_lock);
|
|
ScopedSpinLock lock(m_lock);
|
|
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
|
|
if (!(signal_candidates & (1 << (signal - 1))))
|
|
return DispatchSignalResult::Continue;
|
|
return dispatch_signal(signal);
|
|
}
|
|
|
|
enum class DefaultSignalAction {
|
|
Terminate,
|
|
Ignore,
|
|
DumpCore,
|
|
Stop,
|
|
Continue,
|
|
};
|
|
|
|
static DefaultSignalAction default_signal_action(u8 signal)
|
|
{
|
|
ASSERT(signal && signal < NSIG);
|
|
|
|
switch (signal) {
|
|
case SIGHUP:
|
|
case SIGINT:
|
|
case SIGKILL:
|
|
case SIGPIPE:
|
|
case SIGALRM:
|
|
case SIGUSR1:
|
|
case SIGUSR2:
|
|
case SIGVTALRM:
|
|
case SIGSTKFLT:
|
|
case SIGIO:
|
|
case SIGPROF:
|
|
case SIGTERM:
|
|
return DefaultSignalAction::Terminate;
|
|
case SIGCHLD:
|
|
case SIGURG:
|
|
case SIGWINCH:
|
|
case SIGINFO:
|
|
return DefaultSignalAction::Ignore;
|
|
case SIGQUIT:
|
|
case SIGILL:
|
|
case SIGTRAP:
|
|
case SIGABRT:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGSEGV:
|
|
case SIGXCPU:
|
|
case SIGXFSZ:
|
|
case SIGSYS:
|
|
return DefaultSignalAction::DumpCore;
|
|
case SIGCONT:
|
|
return DefaultSignalAction::Continue;
|
|
case SIGSTOP:
|
|
case SIGTSTP:
|
|
case SIGTTIN:
|
|
case SIGTTOU:
|
|
return DefaultSignalAction::Stop;
|
|
}
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
bool Thread::should_ignore_signal(u8 signal) const
|
|
{
|
|
ASSERT(signal < 32);
|
|
auto& action = m_signal_action_data[signal];
|
|
if (action.handler_or_sigaction.is_null())
|
|
return default_signal_action(signal) == DefaultSignalAction::Ignore;
|
|
if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool Thread::has_signal_handler(u8 signal) const
|
|
{
|
|
ASSERT(signal < 32);
|
|
auto& action = m_signal_action_data[signal];
|
|
return !action.handler_or_sigaction.is_null();
|
|
}
|
|
|
|
static bool push_value_on_user_stack(u32* stack, u32 data)
|
|
{
|
|
*stack -= 4;
|
|
return copy_to_user((u32*)*stack, &data);
|
|
}
|
|
|
|
void Thread::resume_from_stopped()
|
|
{
|
|
ASSERT(is_stopped());
|
|
ASSERT(m_stop_state != State::Invalid);
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
if (m_stop_state == Blocked) {
|
|
ScopedSpinLock block_lock(m_block_lock);
|
|
if (m_blocker) {
|
|
// Hasn't been unblocked yet
|
|
set_state(Blocked, 0);
|
|
} else {
|
|
// Was unblocked while stopped
|
|
set_state(Runnable);
|
|
}
|
|
} else {
|
|
set_state(m_stop_state, 0);
|
|
}
|
|
}
|
|
|
|
DispatchSignalResult Thread::dispatch_signal(u8 signal)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
ASSERT(signal > 0 && signal <= 32);
|
|
ASSERT(process().is_user_process());
|
|
ASSERT(this == Thread::current());
|
|
|
|
#ifdef SIGNAL_DEBUG
|
|
klog() << "signal: dispatch signal " << signal << " to " << *this << " state: " << state_string();
|
|
#endif
|
|
|
|
if (m_state == Invalid || !is_initialized()) {
|
|
// Thread has barely been created, we need to wait until it is
|
|
// at least in Runnable state and is_initialized() returns true,
|
|
// which indicates that it is fully set up an we actually have
|
|
// a register state on the stack that we can modify
|
|
return DispatchSignalResult::Deferred;
|
|
}
|
|
|
|
// if (is_stopped() && signal != SIGCONT && signal != SIGKILL && signal != SIGTRAP) {
|
|
//#ifdef SIGNAL_DEBUG
|
|
// klog() << "signal: " << *this << " is stopped, will handle signal " << signal << " when resumed";
|
|
//#endif
|
|
// return DispatchSignalResult::Deferred;
|
|
// }
|
|
// if (is_blocked()) {
|
|
//#ifdef SIGNAL_DEBUG
|
|
// klog() << "signal: " << *this << " is blocked, will handle signal " << signal << " when unblocking";
|
|
//#endif
|
|
// return DispatchSignalResult::Deferred;
|
|
// }
|
|
|
|
auto& action = m_signal_action_data[signal];
|
|
// FIXME: Implement SA_SIGINFO signal handlers.
|
|
ASSERT(!(action.flags & SA_SIGINFO));
|
|
|
|
// Mark this signal as handled.
|
|
m_pending_signals &= ~(1 << (signal - 1));
|
|
m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
|
|
|
|
auto& process = this->process();
|
|
auto tracer = process.tracer();
|
|
if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) {
|
|
#ifdef SIGNAL_DEBUG
|
|
dbg() << "signal: signal " << signal << " stopping thread " << *this;
|
|
#endif
|
|
set_state(State::Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
}
|
|
|
|
if (signal == SIGCONT) {
|
|
#ifdef SIGNAL_DEBUG
|
|
dbg() << "signal: SIGCONT resuming " << *this;
|
|
#endif
|
|
} else {
|
|
if (tracer) {
|
|
// when a thread is traced, it should be stopped whenever it receives a signal
|
|
// the tracer is notified of this by using waitpid()
|
|
// only "pending signals" from the tracer are sent to the tracee
|
|
if (!tracer->has_pending_signal(signal)) {
|
|
#ifdef SIGNAL_DEBUG
|
|
dbg() << "signal: " << signal << " stopping " << *this << " for tracer";
|
|
#endif
|
|
set_state(Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
}
|
|
tracer->unset_signal(signal);
|
|
}
|
|
}
|
|
|
|
auto handler_vaddr = action.handler_or_sigaction;
|
|
if (handler_vaddr.is_null()) {
|
|
switch (default_signal_action(signal)) {
|
|
case DefaultSignalAction::Stop:
|
|
set_state(Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
case DefaultSignalAction::DumpCore:
|
|
process.set_dump_core(true);
|
|
process.for_each_thread([](auto& thread) {
|
|
thread.set_dump_backtrace_on_finalization();
|
|
return IterationDecision::Continue;
|
|
});
|
|
[[fallthrough]];
|
|
case DefaultSignalAction::Terminate:
|
|
m_process->terminate_due_to_signal(signal);
|
|
return DispatchSignalResult::Terminate;
|
|
case DefaultSignalAction::Ignore:
|
|
ASSERT_NOT_REACHED();
|
|
case DefaultSignalAction::Continue:
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
if (handler_vaddr.as_ptr() == SIG_IGN) {
|
|
#ifdef SIGNAL_DEBUG
|
|
klog() << "signal: " << *this << " ignored signal " << signal;
|
|
#endif
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
|
|
ProcessPagingScope paging_scope(m_process);
|
|
|
|
u32 old_signal_mask = m_signal_mask;
|
|
u32 new_signal_mask = action.mask;
|
|
if (action.flags & SA_NODEFER)
|
|
new_signal_mask &= ~(1 << (signal - 1));
|
|
else
|
|
new_signal_mask |= 1 << (signal - 1);
|
|
|
|
m_signal_mask |= new_signal_mask;
|
|
m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
|
|
|
|
auto setup_stack = [&](RegisterState& state) {
|
|
u32* stack = &state.userspace_esp;
|
|
u32 old_esp = *stack;
|
|
u32 ret_eip = state.eip;
|
|
u32 ret_eflags = state.eflags;
|
|
|
|
#ifdef SIGNAL_DEBUG
|
|
klog() << "signal: setting up user stack to return to eip: " << String::format("%p", ret_eip) << " esp: " << String::format("%p", old_esp);
|
|
#endif
|
|
|
|
// Align the stack to 16 bytes.
|
|
// Note that we push 56 bytes (4 * 14) on to the stack,
|
|
// so we need to account for this here.
|
|
u32 stack_alignment = (*stack - 56) % 16;
|
|
*stack -= stack_alignment;
|
|
|
|
push_value_on_user_stack(stack, ret_eflags);
|
|
|
|
push_value_on_user_stack(stack, ret_eip);
|
|
push_value_on_user_stack(stack, state.eax);
|
|
push_value_on_user_stack(stack, state.ecx);
|
|
push_value_on_user_stack(stack, state.edx);
|
|
push_value_on_user_stack(stack, state.ebx);
|
|
push_value_on_user_stack(stack, old_esp);
|
|
push_value_on_user_stack(stack, state.ebp);
|
|
push_value_on_user_stack(stack, state.esi);
|
|
push_value_on_user_stack(stack, state.edi);
|
|
|
|
// PUSH old_signal_mask
|
|
push_value_on_user_stack(stack, old_signal_mask);
|
|
|
|
push_value_on_user_stack(stack, signal);
|
|
push_value_on_user_stack(stack, handler_vaddr.get());
|
|
push_value_on_user_stack(stack, 0); //push fake return address
|
|
|
|
ASSERT((*stack % 16) == 0);
|
|
};
|
|
|
|
// We now place the thread state on the userspace stack.
|
|
// Note that we use a RegisterState.
|
|
// Conversely, when the thread isn't blocking the RegisterState may not be
|
|
// valid (fork, exec etc) but the tss will, so we use that instead.
|
|
auto& regs = get_register_dump_from_stack();
|
|
setup_stack(regs);
|
|
regs.eip = g_return_to_ring3_from_signal_trampoline.get();
|
|
|
|
#ifdef SIGNAL_DEBUG
|
|
klog() << "signal: Okay, " << *this << " {" << state_string() << "} has been primed with signal handler " << String::format("%w", m_tss.cs) << ":" << String::format("%x", m_tss.eip) << " to deliver " << signal;
|
|
#endif
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
|
|
void Thread::set_default_signal_dispositions()
|
|
{
|
|
// FIXME: Set up all the right default actions. See signal(7).
|
|
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
|
|
m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress(SIG_IGN);
|
|
m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress(SIG_IGN);
|
|
}
|
|
|
|
bool Thread::push_value_on_stack(FlatPtr value)
|
|
{
|
|
m_tss.esp -= 4;
|
|
FlatPtr* stack_ptr = (FlatPtr*)m_tss.esp;
|
|
return copy_to_user(stack_ptr, &value);
|
|
}
|
|
|
|
RegisterState& Thread::get_register_dump_from_stack()
|
|
{
|
|
return *(RegisterState*)(kernel_stack_top() - sizeof(RegisterState));
|
|
}
|
|
|
|
KResultOr<u32> Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment, Vector<AuxiliaryValue> auxiliary_values)
|
|
{
|
|
auto* region = m_process->allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
|
|
if (!region)
|
|
return KResult(-ENOMEM);
|
|
region->set_stack(true);
|
|
|
|
FlatPtr new_esp = region->vaddr().offset(default_userspace_stack_size).get();
|
|
|
|
auto push_on_new_stack = [&new_esp](u32 value) {
|
|
new_esp -= 4;
|
|
Userspace<u32*> stack_ptr = new_esp;
|
|
return copy_to_user(stack_ptr, &value);
|
|
};
|
|
|
|
auto push_aux_value_on_new_stack = [&new_esp](auxv_t value) {
|
|
new_esp -= sizeof(auxv_t);
|
|
Userspace<auxv_t*> stack_ptr = new_esp;
|
|
return copy_to_user(stack_ptr, &value);
|
|
};
|
|
|
|
auto push_string_on_new_stack = [&new_esp](const String& string) {
|
|
new_esp -= round_up_to_power_of_two(string.length() + 1, 4);
|
|
Userspace<u32*> stack_ptr = new_esp;
|
|
return copy_to_user(stack_ptr, string.characters(), string.length() + 1);
|
|
};
|
|
|
|
Vector<FlatPtr> argv_entries;
|
|
for (auto& argument : arguments) {
|
|
push_string_on_new_stack(argument);
|
|
argv_entries.append(new_esp);
|
|
}
|
|
|
|
Vector<FlatPtr> env_entries;
|
|
for (auto& variable : environment) {
|
|
push_string_on_new_stack(variable);
|
|
env_entries.append(new_esp);
|
|
}
|
|
|
|
for (auto& value : auxiliary_values) {
|
|
if (!value.optional_string.is_empty()) {
|
|
push_string_on_new_stack(value.optional_string);
|
|
value.auxv.a_un.a_ptr = (void*)new_esp;
|
|
}
|
|
}
|
|
|
|
for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
|
|
auto& value = auxiliary_values[i];
|
|
push_aux_value_on_new_stack(value.auxv);
|
|
}
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(env_entries[i]);
|
|
FlatPtr envp = new_esp;
|
|
|
|
push_on_new_stack(0);
|
|
for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
|
|
push_on_new_stack(argv_entries[i]);
|
|
FlatPtr argv = new_esp;
|
|
|
|
// NOTE: The stack needs to be 16-byte aligned.
|
|
new_esp -= new_esp % 16;
|
|
|
|
push_on_new_stack((FlatPtr)envp);
|
|
push_on_new_stack((FlatPtr)argv);
|
|
push_on_new_stack((FlatPtr)argv_entries.size());
|
|
push_on_new_stack(0);
|
|
|
|
return new_esp;
|
|
}
|
|
|
|
RefPtr<Thread> Thread::clone(Process& process)
|
|
{
|
|
auto clone = adopt(*new Thread(process));
|
|
memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
|
|
clone->m_signal_mask = m_signal_mask;
|
|
memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
|
|
clone->m_thread_specific_data = m_thread_specific_data;
|
|
clone->m_thread_specific_region_size = m_thread_specific_region_size;
|
|
return clone;
|
|
}
|
|
|
|
void Thread::set_state(State new_state, u8 stop_signal)
|
|
{
|
|
State previous_state;
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
if (new_state == m_state)
|
|
return;
|
|
|
|
{
|
|
ScopedSpinLock thread_lock(m_lock);
|
|
previous_state = m_state;
|
|
if (previous_state == Invalid) {
|
|
// If we were *just* created, we may have already pending signals
|
|
if (has_unmasked_pending_signals()) {
|
|
dbg() << "Dispatch pending signals to new thread " << *this;
|
|
dispatch_one_pending_signal();
|
|
}
|
|
}
|
|
|
|
m_state = new_state;
|
|
#ifdef THREAD_DEBUG
|
|
dbg() << "Set Thread " << *this << " state to " << state_string();
|
|
#endif
|
|
}
|
|
|
|
if (m_process->pid() != 0) {
|
|
update_state_for_thread(previous_state);
|
|
ASSERT(g_scheduler_data->has_thread(*this));
|
|
}
|
|
|
|
if (previous_state == Stopped) {
|
|
m_stop_state = State::Invalid;
|
|
auto& process = this->process();
|
|
if (process.set_stopped(false) == true) {
|
|
process.for_each_thread([&](auto& thread) {
|
|
if (&thread == this || !thread.is_stopped())
|
|
return IterationDecision::Continue;
|
|
#ifdef THREAD_DEBUG
|
|
dbg() << "Resuming peer thread " << thread;
|
|
#endif
|
|
thread.resume_from_stopped();
|
|
return IterationDecision::Continue;
|
|
});
|
|
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued);
|
|
}
|
|
}
|
|
|
|
if (m_state == Stopped) {
|
|
// We don't want to restore to Running state, only Runnable!
|
|
m_stop_state = previous_state != Running ? previous_state : Runnable;
|
|
auto& process = this->process();
|
|
if (process.set_stopped(true) == false) {
|
|
process.for_each_thread([&](auto& thread) {
|
|
if (&thread == this || thread.is_stopped())
|
|
return IterationDecision::Continue;
|
|
#ifdef THREAD_DEBUG
|
|
dbg() << "Stopping peer thread " << thread;
|
|
#endif
|
|
thread.set_state(Stopped, stop_signal);
|
|
return IterationDecision::Continue;
|
|
});
|
|
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal);
|
|
}
|
|
} else if (m_state == Dying) {
|
|
ASSERT(previous_state != Blocked);
|
|
if (this != Thread::current() && is_finalizable()) {
|
|
// Some other thread set this thread to Dying, notify the
|
|
// finalizer right away as it can be cleaned up now
|
|
Scheduler::notify_finalizer();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Thread::update_state_for_thread(Thread::State previous_state)
|
|
{
|
|
ASSERT_INTERRUPTS_DISABLED();
|
|
ASSERT(g_scheduler_data);
|
|
ASSERT(g_scheduler_lock.own_lock());
|
|
auto& previous_list = g_scheduler_data->thread_list_for_state(previous_state);
|
|
auto& list = g_scheduler_data->thread_list_for_state(state());
|
|
|
|
if (&previous_list != &list) {
|
|
previous_list.remove(*this);
|
|
}
|
|
|
|
if (list.contains(*this))
|
|
return;
|
|
|
|
list.append(*this);
|
|
}
|
|
|
|
String Thread::backtrace()
|
|
{
|
|
return backtrace_impl();
|
|
}
|
|
|
|
struct RecognizedSymbol {
|
|
u32 address;
|
|
const KernelSymbol* symbol { nullptr };
|
|
};
|
|
|
|
static bool symbolicate(const RecognizedSymbol& symbol, const Process& process, StringBuilder& builder, Process::ELFBundle* elf_bundle)
|
|
{
|
|
if (!symbol.address)
|
|
return false;
|
|
|
|
bool mask_kernel_addresses = !process.is_superuser();
|
|
if (!symbol.symbol) {
|
|
if (!is_user_address(VirtualAddress(symbol.address))) {
|
|
builder.append("0xdeadc0de\n");
|
|
} else {
|
|
if (elf_bundle && elf_bundle->elf_loader->has_symbols())
|
|
builder.appendf("%p %s\n", symbol.address, elf_bundle->elf_loader->symbolicate(symbol.address).characters());
|
|
else
|
|
builder.appendf("%p\n", symbol.address);
|
|
}
|
|
return true;
|
|
}
|
|
unsigned offset = symbol.address - symbol.symbol->address;
|
|
if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
|
|
builder.appendf("%p\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address);
|
|
} else {
|
|
builder.appendf("%p %s +%u\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address, demangle(symbol.symbol->name).characters(), offset);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
String Thread::backtrace_impl()
|
|
{
|
|
Vector<RecognizedSymbol, 128> recognized_symbols;
|
|
|
|
auto& process = const_cast<Process&>(this->process());
|
|
OwnPtr<Process::ELFBundle> elf_bundle;
|
|
if (!Processor::current().in_irq()) {
|
|
// If we're handling IRQs we can't really safely symbolicate
|
|
elf_bundle = process.elf_bundle();
|
|
}
|
|
auto stack_trace = Processor::capture_stack_trace(*this);
|
|
ASSERT(!g_scheduler_lock.own_lock());
|
|
ProcessPagingScope paging_scope(process);
|
|
for (auto& frame : stack_trace) {
|
|
if (is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) {
|
|
recognized_symbols.append({ frame, symbolicate_kernel_address(frame) });
|
|
} else {
|
|
recognized_symbols.append({ frame, symbolicate_kernel_address(frame) });
|
|
}
|
|
}
|
|
|
|
StringBuilder builder;
|
|
for (auto& symbol : recognized_symbols) {
|
|
if (!symbolicate(symbol, process, builder, elf_bundle.ptr()))
|
|
break;
|
|
}
|
|
return builder.to_string();
|
|
}
|
|
|
|
Vector<FlatPtr> Thread::raw_backtrace(FlatPtr ebp, FlatPtr eip) const
|
|
{
|
|
InterruptDisabler disabler;
|
|
auto& process = const_cast<Process&>(this->process());
|
|
ProcessPagingScope paging_scope(process);
|
|
Vector<FlatPtr, Profiling::max_stack_frame_count> backtrace;
|
|
backtrace.append(eip);
|
|
FlatPtr stack_ptr_copy;
|
|
FlatPtr stack_ptr = (FlatPtr)ebp;
|
|
while (stack_ptr) {
|
|
void* fault_at;
|
|
if (!safe_memcpy(&stack_ptr_copy, (void*)stack_ptr, sizeof(FlatPtr), fault_at))
|
|
break;
|
|
FlatPtr retaddr;
|
|
if (!safe_memcpy(&retaddr, (void*)(stack_ptr + sizeof(FlatPtr)), sizeof(FlatPtr), fault_at))
|
|
break;
|
|
backtrace.append(retaddr);
|
|
if (backtrace.size() == Profiling::max_stack_frame_count)
|
|
break;
|
|
stack_ptr = stack_ptr_copy;
|
|
}
|
|
return backtrace;
|
|
}
|
|
|
|
KResult Thread::make_thread_specific_region(Badge<Process>)
|
|
{
|
|
// The process may not require a TLS region
|
|
if (!process().m_master_tls_region)
|
|
return KSuccess;
|
|
|
|
size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
|
|
m_thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
|
|
auto* region = process().allocate_region({}, m_thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
|
|
if (!region)
|
|
return KResult(-ENOMEM);
|
|
SmapDisabler disabler;
|
|
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
|
|
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
|
|
m_thread_specific_data = VirtualAddress(thread_specific_data);
|
|
thread_specific_data->self = thread_specific_data;
|
|
if (process().m_master_tls_size)
|
|
memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
|
|
return KSuccess;
|
|
}
|
|
|
|
const LogStream& operator<<(const LogStream& stream, const Thread& value)
|
|
{
|
|
return stream << value.process().name() << "(" << value.pid().value() << ":" << value.tid().value() << ")";
|
|
}
|
|
|
|
RefPtr<Thread> Thread::from_tid(ThreadID tid)
|
|
{
|
|
RefPtr<Thread> found_thread;
|
|
ScopedSpinLock lock(g_scheduler_lock);
|
|
Thread::for_each([&](auto& thread) {
|
|
if (thread.tid() == tid) {
|
|
found_thread = &thread;
|
|
return IterationDecision::Break;
|
|
}
|
|
return IterationDecision::Continue;
|
|
});
|
|
return found_thread;
|
|
}
|
|
|
|
void Thread::reset_fpu_state()
|
|
{
|
|
memcpy(m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState));
|
|
}
|
|
|
|
bool Thread::should_be_stopped() const
|
|
{
|
|
return process().is_stopped();
|
|
}
|
|
|
|
}
|