ladybird/Libraries/LibJS/Runtime/AbstractOperations.h

338 lines
14 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2020-2023, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/Forward.h>
#include <LibCrypto/Forward.h>
#include <LibJS/Forward.h>
#include <LibJS/Heap/MarkedVector.h>
#include <LibJS/Runtime/CanonicalIndex.h>
#include <LibJS/Runtime/FunctionObject.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/Iterator.h>
#include <LibJS/Runtime/KeyedCollections.h>
#include <LibJS/Runtime/PrivateEnvironment.h>
#include <LibJS/Runtime/VM.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
NonnullGCPtr<DeclarativeEnvironment> new_declarative_environment(Environment&);
NonnullGCPtr<ObjectEnvironment> new_object_environment(Object&, bool is_with_environment, Environment*);
NonnullGCPtr<FunctionEnvironment> new_function_environment(ECMAScriptFunctionObject&, Object* new_target);
NonnullGCPtr<PrivateEnvironment> new_private_environment(VM& vm, PrivateEnvironment* outer);
NonnullGCPtr<Environment> get_this_environment(VM&);
bool can_be_held_weakly(Value);
Object* get_super_constructor(VM&);
ThrowCompletionOr<Value> require_object_coercible(VM&, Value);
ThrowCompletionOr<Value> call_impl(VM&, Value function, Value this_value, ReadonlySpan<Value> arguments = {});
ThrowCompletionOr<Value> call_impl(VM&, FunctionObject& function, Value this_value, ReadonlySpan<Value> arguments = {});
ThrowCompletionOr<NonnullGCPtr<Object>> construct_impl(VM&, FunctionObject&, ReadonlySpan<Value> arguments = {}, FunctionObject* new_target = nullptr);
ThrowCompletionOr<size_t> length_of_array_like(VM&, Object const&);
ThrowCompletionOr<MarkedVector<Value>> create_list_from_array_like(VM&, Value, Function<ThrowCompletionOr<void>(Value)> = {});
ThrowCompletionOr<FunctionObject*> species_constructor(VM&, Object const&, FunctionObject& default_constructor);
ThrowCompletionOr<Realm*> get_function_realm(VM&, FunctionObject const&);
ThrowCompletionOr<void> initialize_bound_name(VM&, DeprecatedFlyString const&, Value, Environment*);
bool is_compatible_property_descriptor(bool extensible, PropertyDescriptor const&, Optional<PropertyDescriptor> const& current);
bool validate_and_apply_property_descriptor(Object*, PropertyKey const&, bool extensible, PropertyDescriptor const&, Optional<PropertyDescriptor> const& current);
ThrowCompletionOr<Object*> get_prototype_from_constructor(VM&, FunctionObject const& constructor, NonnullGCPtr<Object> (Intrinsics::*intrinsic_default_prototype)());
Object* create_unmapped_arguments_object(VM&, ReadonlySpan<Value> arguments);
Object* create_mapped_arguments_object(VM&, FunctionObject&, Vector<FunctionParameter> const&, ReadonlySpan<Value> arguments, Environment&);
struct DisposableResource {
Value resource_value;
NonnullGCPtr<FunctionObject> dispose_method;
};
ThrowCompletionOr<void> add_disposable_resource(VM&, Vector<DisposableResource>& disposable, Value, Environment::InitializeBindingHint, FunctionObject* = nullptr);
ThrowCompletionOr<DisposableResource> create_disposable_resource(VM&, Value, Environment::InitializeBindingHint, FunctionObject* method = nullptr);
ThrowCompletionOr<GCPtr<FunctionObject>> get_dispose_method(VM&, Value, Environment::InitializeBindingHint);
Completion dispose(VM& vm, Value, NonnullGCPtr<FunctionObject> method);
Completion dispose_resources(VM& vm, Vector<DisposableResource> const& disposable, Completion completion);
Completion dispose_resources(VM& vm, GCPtr<DeclarativeEnvironment> disposable, Completion completion);
ThrowCompletionOr<Value> perform_import_call(VM&, Value specifier, Value options_value);
enum class CanonicalIndexMode {
DetectNumericRoundtrip,
IgnoreNumericRoundtrip,
};
[[nodiscard]] CanonicalIndex canonical_numeric_index_string(PropertyKey const&, CanonicalIndexMode needs_numeric);
ThrowCompletionOr<String> get_substitution(VM&, Utf16View const& matched, Utf16View const& str, size_t position, Span<Value> captures, Value named_captures, Value replacement);
enum class CallerMode {
Strict,
NonStrict
};
ThrowCompletionOr<Value> perform_eval(VM&, Value, CallerMode, EvalMode);
ThrowCompletionOr<void> eval_declaration_instantiation(VM& vm, Program const& program, Environment* variable_environment, Environment* lexical_environment, PrivateEnvironment* private_environment, bool strict);
// 7.3.14 Call ( F, V [ , argumentsList ] ), https://tc39.es/ecma262/#sec-call
ALWAYS_INLINE ThrowCompletionOr<Value> call(VM& vm, Value function, Value this_value, ReadonlySpan<Value> arguments_list)
{
return call_impl(vm, function, this_value, arguments_list);
}
ALWAYS_INLINE ThrowCompletionOr<Value> call(VM& vm, Value function, Value this_value, Span<Value> arguments_list)
{
return call_impl(vm, function, this_value, static_cast<ReadonlySpan<Value>>(arguments_list));
}
template<typename... Args>
ALWAYS_INLINE ThrowCompletionOr<Value> call(VM& vm, Value function, Value this_value, Args&&... args)
{
constexpr auto argument_count = sizeof...(Args);
if constexpr (argument_count > 0) {
AK::Array<Value, argument_count> arguments { forward<Args>(args)... };
return call_impl(vm, function, this_value, static_cast<ReadonlySpan<Value>>(arguments.span()));
}
return call_impl(vm, function, this_value);
}
ALWAYS_INLINE ThrowCompletionOr<Value> call(VM& vm, FunctionObject& function, Value this_value, ReadonlySpan<Value> arguments_list)
{
return call_impl(vm, function, this_value, arguments_list);
}
ALWAYS_INLINE ThrowCompletionOr<Value> call(VM& vm, FunctionObject& function, Value this_value, Span<Value> arguments_list)
{
return call_impl(vm, function, this_value, static_cast<ReadonlySpan<Value>>(arguments_list));
}
template<typename... Args>
ALWAYS_INLINE ThrowCompletionOr<Value> call(VM& vm, FunctionObject& function, Value this_value, Args&&... args)
{
constexpr auto argument_count = sizeof...(Args);
if constexpr (argument_count > 0) {
AK::Array<Value, argument_count> arguments { forward<Args>(args)... };
return call_impl(vm, function, this_value, static_cast<ReadonlySpan<Value>>(arguments.span()));
}
return call_impl(vm, function, this_value);
}
// 7.3.15 Construct ( F [ , argumentsList [ , newTarget ] ] ), https://tc39.es/ecma262/#sec-construct
template<typename... Args>
ALWAYS_INLINE ThrowCompletionOr<NonnullGCPtr<Object>> construct(VM& vm, FunctionObject& function, Args&&... args)
{
constexpr auto argument_count = sizeof...(Args);
if constexpr (argument_count > 0) {
AK::Array<Value, argument_count> arguments { forward<Args>(args)... };
return construct_impl(vm, function, static_cast<ReadonlySpan<Value>>(arguments.span()));
}
return construct_impl(vm, function);
}
ALWAYS_INLINE ThrowCompletionOr<NonnullGCPtr<Object>> construct(VM& vm, FunctionObject& function, ReadonlySpan<Value> arguments_list, FunctionObject* new_target = nullptr)
{
return construct_impl(vm, function, arguments_list, new_target);
}
ALWAYS_INLINE ThrowCompletionOr<NonnullGCPtr<Object>> construct(VM& vm, FunctionObject& function, Span<Value> arguments_list, FunctionObject* new_target = nullptr)
{
return construct_impl(vm, function, static_cast<ReadonlySpan<Value>>(arguments_list), new_target);
}
// 10.1.13 OrdinaryCreateFromConstructor ( constructor, intrinsicDefaultProto [ , internalSlotsList ] ), https://tc39.es/ecma262/#sec-ordinarycreatefromconstructor
template<typename T, typename... Args>
ThrowCompletionOr<NonnullGCPtr<T>> ordinary_create_from_constructor(VM& vm, FunctionObject const& constructor, NonnullGCPtr<Object> (Intrinsics::*intrinsic_default_prototype)(), Args&&... args)
{
auto& realm = *vm.current_realm();
auto* prototype = TRY(get_prototype_from_constructor(vm, constructor, intrinsic_default_prototype));
return realm.heap().allocate<T>(realm, forward<Args>(args)..., *prototype);
}
// 14.1 MergeLists ( a, b ), https://tc39.es/proposal-temporal/#sec-temporal-mergelists
template<typename T>
Vector<T> merge_lists(Vector<T> const& a, Vector<T> const& b)
{
// 1. Let merged be a new empty List.
Vector<T> merged;
// 2. For each element element of a, do
for (auto const& element : a) {
// a. If merged does not contain element, then
if (!merged.contains_slow(element)) {
// i. Append element to merged.
merged.append(element);
}
}
// 3. For each element element of b, do
for (auto const& element : b) {
// a. If merged does not contain element, then
if (!merged.contains_slow(element)) {
// i. Append element to merged.
merged.append(element);
}
}
// 4. Return merged.
return merged;
}
// 7.3.35 AddValueToKeyedGroup ( groups, key, value ), https://tc39.es/ecma262/#sec-add-value-to-keyed-group
template<typename GroupsType, typename KeyType>
void add_value_to_keyed_group(VM& vm, GroupsType& groups, KeyType key, Value value)
{
// 1. For each Record { [[Key]], [[Elements]] } g of groups, do
// a. If SameValue(g.[[Key]], key) is true, then
// NOTE: This is performed in KeyedGroupTraits::equals for groupToMap and Traits<JS::PropertyKey>::equals for group.
auto existing_elements_iterator = groups.find(key);
if (existing_elements_iterator != groups.end()) {
// i. Assert: exactly one element of groups meets this criteria.
// NOTE: This is done on insertion into the hash map, as only `set` tells us if we overrode an entry.
// ii. Append value as the last element of g.[[Elements]].
existing_elements_iterator->value.append(value);
// iii. Return unused.
return;
}
// 2. Let group be the Record { [[Key]]: key, [[Elements]]: « value » }.
MarkedVector<Value> new_elements { vm.heap() };
new_elements.append(value);
// 3. Append group as the last element of groups.
auto result = groups.set(key, move(new_elements));
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
// 4. Return unused.
}
// 7.3.36 GroupBy ( items, callbackfn, keyCoercion ), https://tc39.es/ecma262/#sec-groupby
template<typename GroupsType, typename KeyType>
ThrowCompletionOr<GroupsType> group_by(VM& vm, Value items, Value callback_function)
{
// 1. Perform ? RequireObjectCoercible(items).
TRY(require_object_coercible(vm, items));
// 2. If IsCallable(callbackfn) is false, throw a TypeError exception.
if (!callback_function.is_function())
return vm.throw_completion<TypeError>(ErrorType::NotAFunction, callback_function.to_string_without_side_effects());
// 3. Let groups be a new empty List.
GroupsType groups;
// 4. Let iteratorRecord be ? GetIterator(items, sync).
auto iterator_record = TRY(get_iterator(vm, items, IteratorHint::Sync));
// 5. Let k be 0.
u64 k = 0;
// 6. Repeat,
while (true) {
// a. If k ≥ 2^53 - 1, then
if (k >= MAX_ARRAY_LIKE_INDEX) {
// i. Let error be ThrowCompletion(a newly created TypeError object).
auto error = vm.throw_completion<TypeError>(ErrorType::ArrayMaxSize);
// ii. Return ? IteratorClose(iteratorRecord, error).
return iterator_close(vm, iterator_record, move(error));
}
// b. Let next be ? IteratorStepValue(iteratorRecord).
auto next = TRY(iterator_step_value(vm, iterator_record));
// c. If next is DONE, then
if (!next.has_value()) {
// i. Return groups.
return ThrowCompletionOr<GroupsType> { move(groups) };
}
// d. Let value be next.
auto value = next.release_value();
// e. Let key be Completion(Call(callbackfn, undefined, « value, 𝔽(k) »)).
auto key = call(vm, callback_function, js_undefined(), value, Value(k));
// f. IfAbruptCloseIterator(key, iteratorRecord).
if (key.is_error())
return Completion { *TRY(iterator_close(vm, iterator_record, key.release_error())) };
// g. If keyCoercion is property, then
if constexpr (IsSame<KeyType, PropertyKey>) {
// i. Set key to Completion(ToPropertyKey(key)).
auto property_key = key.value().to_property_key(vm);
// ii. IfAbruptCloseIterator(key, iteratorRecord).
if (property_key.is_error())
return Completion { *TRY(iterator_close(vm, iterator_record, property_key.release_error())) };
add_value_to_keyed_group(vm, groups, property_key.release_value(), value);
}
// h. Else,
else {
// i. Assert: keyCoercion is zero.
static_assert(IsSame<KeyType, void>);
// ii. Set key to CanonicalizeKeyedCollectionKey(key).
key = canonicalize_keyed_collection_key(key.value());
add_value_to_keyed_group(vm, groups, make_handle(key.release_value()), value);
}
// i. Perform AddValueToKeyedGroup(groups, key, value).
// NOTE: This is dependent on the `key_coercion` template parameter and thus done separately in the branches above.
// j. Set k to k + 1.
++k;
}
}
// x modulo y, https://tc39.es/ecma262/#eqn-modulo
template<Arithmetic T, Arithmetic U>
auto modulo(T x, U y)
{
// The notation “x modulo y” (y must be finite and non-zero) computes a value k of the same sign as y (or zero) such that abs(k) < abs(y) and x - k = q × y for some integer q.
VERIFY(y != 0);
if constexpr (IsFloatingPoint<T> || IsFloatingPoint<U>) {
if constexpr (IsFloatingPoint<U>)
VERIFY(isfinite(y));
auto r = fmod(x, y);
return r < 0 ? r + y : r;
} else {
return ((x % y) + y) % y;
}
}
auto modulo(Crypto::BigInteger auto const& x, Crypto::BigInteger auto const& y)
{
VERIFY(!y.is_zero());
auto result = x.divided_by(y).remainder;
if (result.is_negative())
result = result.plus(y);
return result;
}
// remainder(x, y), https://tc39.es/proposal-temporal/#eqn-remainder
template<Arithmetic T, Arithmetic U>
auto remainder(T x, U y)
{
// The mathematical function remainder(x, y) produces the mathematical value whose sign is the sign of x and whose magnitude is abs(x) modulo y.
VERIFY(y != 0);
if constexpr (IsFloatingPoint<T> || IsFloatingPoint<U>) {
if constexpr (IsFloatingPoint<U>)
VERIFY(isfinite(y));
return fmod(x, y);
} else {
return x % y;
}
}
auto remainder(Crypto::BigInteger auto const& x, Crypto::BigInteger auto const& y)
{
VERIFY(!y.is_zero());
return x.divided_by(y).remainder;
}
}