ladybird/Libraries/LibCompress/Deflate.cpp

976 lines
37 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Array.h>
#include <AK/Assertions.h>
#include <AK/BinarySearch.h>
#include <AK/MemoryStream.h>
#include <string.h>
#include <LibCompress/Deflate.h>
#include <LibCompress/Huffman.h>
namespace Compress {
static constexpr u8 deflate_special_code_length_copy = 16;
static constexpr u8 deflate_special_code_length_zeros = 17;
static constexpr u8 deflate_special_code_length_long_zeros = 18;
static constexpr int EndOfBlock = 256;
CanonicalCode const& CanonicalCode::fixed_literal_codes()
{
static CanonicalCode code;
static bool initialized = false;
if (initialized)
return code;
code = MUST(CanonicalCode::from_bytes(fixed_literal_bit_lengths));
initialized = true;
return code;
}
CanonicalCode const& CanonicalCode::fixed_distance_codes()
{
static CanonicalCode code;
static bool initialized = false;
if (initialized)
return code;
code = MUST(CanonicalCode::from_bytes(fixed_distance_bit_lengths));
initialized = true;
return code;
}
ErrorOr<CanonicalCode> CanonicalCode::from_bytes(ReadonlyBytes bytes)
{
CanonicalCode code;
auto non_zero_symbols = 0;
auto last_non_zero = -1;
for (size_t i = 0; i < bytes.size(); i++) {
if (bytes[i] != 0) {
non_zero_symbols++;
last_non_zero = i;
}
}
if (non_zero_symbols == 1) { // special case - only 1 symbol
code.m_prefix_table[0] = PrefixTableEntry { static_cast<u16>(last_non_zero), 1u };
code.m_prefix_table[1] = code.m_prefix_table[0];
code.m_max_prefixed_code_length = 1;
if (code.m_bit_codes.size() < static_cast<size_t>(last_non_zero + 1)) {
TRY(code.m_bit_codes.try_resize(last_non_zero + 1));
TRY(code.m_bit_code_lengths.try_resize(last_non_zero + 1));
}
code.m_bit_codes[last_non_zero] = 0;
code.m_bit_code_lengths[last_non_zero] = 1;
return code;
}
struct PrefixCode {
u16 symbol_code { 0 };
u16 symbol_value { 0 };
u16 code_length { 0 };
};
Array<PrefixCode, 1 << CanonicalCode::max_allowed_prefixed_code_length> prefix_codes;
size_t number_of_prefix_codes = 0;
auto next_code = 0;
for (size_t code_length = 1; code_length <= 15; ++code_length) {
next_code <<= 1;
auto start_bit = 1 << code_length;
for (size_t symbol = 0; symbol < bytes.size(); ++symbol) {
if (bytes[symbol] != code_length)
continue;
if (next_code > start_bit)
return Error::from_string_literal("Failed to decode code lengths");
if (code_length <= CanonicalCode::max_allowed_prefixed_code_length) {
if (number_of_prefix_codes >= prefix_codes.size())
return Error::from_string_literal("Invalid canonical Huffman code");
auto& prefix_code = prefix_codes[number_of_prefix_codes++];
prefix_code.symbol_code = next_code;
prefix_code.symbol_value = symbol;
prefix_code.code_length = code_length;
code.m_max_prefixed_code_length = code_length;
} else {
code.m_symbol_codes.append(start_bit | next_code);
code.m_symbol_values.append(symbol);
}
if (code.m_bit_codes.size() < symbol + 1) {
TRY(code.m_bit_codes.try_resize(symbol + 1));
TRY(code.m_bit_code_lengths.try_resize(symbol + 1));
}
code.m_bit_codes[symbol] = fast_reverse16(start_bit | next_code, code_length); // DEFLATE writes huffman encoded symbols as lsb-first
code.m_bit_code_lengths[symbol] = code_length;
next_code++;
}
}
if (next_code != (1 << 15))
return Error::from_string_literal("Failed to decode code lengths");
for (auto [symbol_code, symbol_value, code_length] : prefix_codes) {
if (code_length == 0 || code_length > CanonicalCode::max_allowed_prefixed_code_length)
break;
auto shift = code.m_max_prefixed_code_length - code_length;
symbol_code <<= shift;
for (size_t j = 0; j < (1u << shift); ++j) {
auto index = fast_reverse16(symbol_code + j, code.m_max_prefixed_code_length);
code.m_prefix_table[index] = PrefixTableEntry { symbol_value, code_length };
}
}
return code;
}
ErrorOr<u32> CanonicalCode::read_symbol(LittleEndianInputBitStream& stream) const
{
auto prefix = TRY(stream.peek_bits<size_t>(m_max_prefixed_code_length));
if (auto [symbol_value, code_length] = m_prefix_table[prefix]; code_length != 0) {
stream.discard_previously_peeked_bits(code_length);
return symbol_value;
}
auto code_bits = TRY(stream.read_bits<u16>(m_max_prefixed_code_length));
code_bits = fast_reverse16(code_bits, m_max_prefixed_code_length);
code_bits |= 1 << m_max_prefixed_code_length;
for (size_t i = m_max_prefixed_code_length; i < 16; ++i) {
size_t index;
if (binary_search(m_symbol_codes.span(), code_bits, &index))
return m_symbol_values[index];
code_bits = code_bits << 1 | TRY(stream.read_bit());
}
return Error::from_string_literal("Symbol exceeds maximum symbol number");
}
DeflateDecompressor::CompressedBlock::CompressedBlock(DeflateDecompressor& decompressor, CanonicalCode literal_codes, Optional<CanonicalCode> distance_codes)
: m_decompressor(decompressor)
, m_literal_codes(literal_codes)
, m_distance_codes(distance_codes)
{
}
ErrorOr<bool> DeflateDecompressor::CompressedBlock::try_read_more()
{
if (m_eof == true)
return false;
auto const symbol = TRY(m_literal_codes.read_symbol(*m_decompressor.m_input_stream));
if (symbol >= 286)
return Error::from_string_literal("Invalid deflate literal/length symbol");
if (symbol < EndOfBlock) {
u8 byte_symbol = symbol;
m_decompressor.m_output_buffer.write({ &byte_symbol, sizeof(byte_symbol) });
return true;
}
if (symbol == EndOfBlock) {
m_eof = true;
return false;
}
if (!m_distance_codes.has_value())
return Error::from_string_literal("Distance codes have not been initialized");
auto const length = TRY(m_decompressor.decode_length(symbol));
auto const distance_symbol = TRY(m_distance_codes.value().read_symbol(*m_decompressor.m_input_stream));
if (distance_symbol >= 30)
return Error::from_string_literal("Invalid deflate distance symbol");
auto const distance = TRY(m_decompressor.decode_distance(distance_symbol));
auto copied_length = TRY(m_decompressor.m_output_buffer.copy_from_seekback(distance, length));
// TODO: What should we do if the output buffer is full?
VERIFY(copied_length == length);
return true;
}
DeflateDecompressor::UncompressedBlock::UncompressedBlock(DeflateDecompressor& decompressor, size_t length)
: m_decompressor(decompressor)
, m_bytes_remaining(length)
{
}
ErrorOr<bool> DeflateDecompressor::UncompressedBlock::try_read_more()
{
if (m_bytes_remaining == 0)
return false;
if (m_decompressor.m_input_stream->is_eof())
return Error::from_string_literal("Input data ends in the middle of an uncompressed DEFLATE block");
Array<u8, 4096> temporary_buffer;
auto readable_bytes = temporary_buffer.span().trim(min(m_bytes_remaining, m_decompressor.m_output_buffer.empty_space()));
auto read_bytes = TRY(m_decompressor.m_input_stream->read_some(readable_bytes));
auto written_bytes = m_decompressor.m_output_buffer.write(read_bytes);
VERIFY(read_bytes.size() == written_bytes);
m_bytes_remaining -= written_bytes;
return true;
}
ErrorOr<NonnullOwnPtr<DeflateDecompressor>> DeflateDecompressor::construct(MaybeOwned<LittleEndianInputBitStream> stream)
{
auto output_buffer = TRY(CircularBuffer::create_empty(32 * KiB));
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) DeflateDecompressor(move(stream), move(output_buffer))));
}
DeflateDecompressor::DeflateDecompressor(MaybeOwned<LittleEndianInputBitStream> stream, CircularBuffer output_buffer)
: m_input_stream(move(stream))
, m_output_buffer(move(output_buffer))
{
}
DeflateDecompressor::~DeflateDecompressor()
{
if (m_state == State::ReadingCompressedBlock)
m_compressed_block.~CompressedBlock();
if (m_state == State::ReadingUncompressedBlock)
m_uncompressed_block.~UncompressedBlock();
}
ErrorOr<Bytes> DeflateDecompressor::read_some(Bytes bytes)
{
size_t total_read = 0;
while (total_read < bytes.size()) {
auto slice = bytes.slice(total_read);
if (m_state == State::Idle) {
if (m_read_final_block)
break;
m_read_final_block = TRY(m_input_stream->read_bit());
auto const block_type = TRY(m_input_stream->read_bits(2));
if (block_type == 0b00) {
m_input_stream->align_to_byte_boundary();
u16 length = TRY(m_input_stream->read_value<LittleEndian<u16>>());
u16 negated_length = TRY(m_input_stream->read_value<LittleEndian<u16>>());
if ((length ^ 0xffff) != negated_length)
return Error::from_string_literal("Calculated negated length does not equal stored negated length");
m_state = State::ReadingUncompressedBlock;
new (&m_uncompressed_block) UncompressedBlock(*this, length);
continue;
}
if (block_type == 0b01) {
m_state = State::ReadingCompressedBlock;
new (&m_compressed_block) CompressedBlock(*this, CanonicalCode::fixed_literal_codes(), CanonicalCode::fixed_distance_codes());
continue;
}
if (block_type == 0b10) {
CanonicalCode literal_codes;
Optional<CanonicalCode> distance_codes;
TRY(decode_codes(literal_codes, distance_codes));
m_state = State::ReadingCompressedBlock;
new (&m_compressed_block) CompressedBlock(*this, literal_codes, distance_codes);
continue;
}
return Error::from_string_literal("Unhandled block type for Idle state");
}
if (m_state == State::ReadingCompressedBlock) {
auto nread = m_output_buffer.read(slice).size();
while (nread < slice.size() && TRY(m_compressed_block.try_read_more())) {
nread += m_output_buffer.read(slice.slice(nread)).size();
}
total_read += nread;
if (nread == slice.size())
break;
m_compressed_block.~CompressedBlock();
m_state = State::Idle;
continue;
}
if (m_state == State::ReadingUncompressedBlock) {
auto nread = m_output_buffer.read(slice).size();
while (nread < slice.size() && TRY(m_uncompressed_block.try_read_more())) {
nread += m_output_buffer.read(slice.slice(nread)).size();
}
total_read += nread;
if (nread == slice.size())
break;
m_uncompressed_block.~UncompressedBlock();
m_state = State::Idle;
continue;
}
VERIFY_NOT_REACHED();
}
return bytes.slice(0, total_read);
}
bool DeflateDecompressor::is_eof() const { return m_state == State::Idle && m_read_final_block; }
ErrorOr<size_t> DeflateDecompressor::write_some(ReadonlyBytes)
{
return Error::from_errno(EBADF);
}
bool DeflateDecompressor::is_open() const
{
return true;
}
void DeflateDecompressor::close()
{
}
ErrorOr<ByteBuffer> DeflateDecompressor::decompress_all(ReadonlyBytes bytes)
{
FixedMemoryStream memory_stream { bytes };
LittleEndianInputBitStream bit_stream { MaybeOwned<Stream>(memory_stream) };
auto deflate_stream = TRY(DeflateDecompressor::construct(MaybeOwned<LittleEndianInputBitStream>(bit_stream)));
return deflate_stream->read_until_eof(4096);
}
ErrorOr<u32> DeflateDecompressor::decode_length(u32 symbol)
{
if (symbol <= 264)
return symbol - 254;
if (symbol <= 284) {
auto extra_bits = (symbol - 261) / 4;
return (((symbol - 265) % 4 + 4) << extra_bits) + 3 + TRY(m_input_stream->read_bits(extra_bits));
}
if (symbol == 285)
return DeflateDecompressor::max_back_reference_length;
VERIFY_NOT_REACHED();
}
ErrorOr<u32> DeflateDecompressor::decode_distance(u32 symbol)
{
if (symbol <= 3)
return symbol + 1;
if (symbol <= 29) {
auto extra_bits = (symbol / 2) - 1;
return ((symbol % 2 + 2) << extra_bits) + 1 + TRY(m_input_stream->read_bits(extra_bits));
}
VERIFY_NOT_REACHED();
}
ErrorOr<void> DeflateDecompressor::decode_codes(CanonicalCode& literal_code, Optional<CanonicalCode>& distance_code)
{
auto literal_code_count = TRY(m_input_stream->read_bits(5)) + 257;
auto distance_code_count = TRY(m_input_stream->read_bits(5)) + 1;
auto code_length_count = TRY(m_input_stream->read_bits(4)) + 4;
// First we have to extract the code lengths of the code that was used to encode the code lengths of
// the code that was used to encode the block.
u8 code_lengths_code_lengths[19] = { 0 };
for (size_t i = 0; i < code_length_count; ++i) {
code_lengths_code_lengths[code_lengths_code_lengths_order[i]] = TRY(m_input_stream->read_bits(3));
}
// Now we can extract the code that was used to encode the code lengths of the code that was used to
// encode the block.
auto const code_length_code = TRY(CanonicalCode::from_bytes({ code_lengths_code_lengths, sizeof(code_lengths_code_lengths) }));
// Next we extract the code lengths of the code that was used to encode the block.
Vector<u8, 286> code_lengths;
while (code_lengths.size() < literal_code_count + distance_code_count) {
auto symbol = TRY(code_length_code.read_symbol(*m_input_stream));
if (symbol < deflate_special_code_length_copy) {
code_lengths.append(static_cast<u8>(symbol));
} else if (symbol == deflate_special_code_length_copy) {
if (code_lengths.is_empty())
return Error::from_string_literal("Found no codes to copy before a copy block");
auto nrepeat = 3 + TRY(m_input_stream->read_bits(2));
for (size_t j = 0; j < nrepeat; ++j)
code_lengths.append(code_lengths.last());
} else if (symbol == deflate_special_code_length_zeros) {
auto nrepeat = 3 + TRY(m_input_stream->read_bits(3));
for (size_t j = 0; j < nrepeat; ++j)
code_lengths.append(0);
} else {
VERIFY(symbol == deflate_special_code_length_long_zeros);
auto nrepeat = 11 + TRY(m_input_stream->read_bits(7));
for (size_t j = 0; j < nrepeat; ++j)
code_lengths.append(0);
}
}
if (code_lengths.size() != literal_code_count + distance_code_count)
return Error::from_string_literal("Number of code lengths does not match the sum of codes");
// Now we extract the code that was used to encode literals and lengths in the block.
literal_code = TRY(CanonicalCode::from_bytes(code_lengths.span().trim(literal_code_count)));
// Now we extract the code that was used to encode distances in the block.
if (distance_code_count == 1) {
auto length = code_lengths[literal_code_count];
if (length == 0)
return {};
else if (length != 1)
return Error::from_string_literal("Length for a single distance code is longer than 1");
}
distance_code = TRY(CanonicalCode::from_bytes(code_lengths.span().slice(literal_code_count)));
return {};
}
ErrorOr<NonnullOwnPtr<DeflateCompressor>> DeflateCompressor::construct(MaybeOwned<Stream> stream, CompressionLevel compression_level)
{
auto bit_stream = TRY(try_make<LittleEndianOutputBitStream>(move(stream)));
auto deflate_compressor = TRY(adopt_nonnull_own_or_enomem(new (nothrow) DeflateCompressor(move(bit_stream), compression_level)));
return deflate_compressor;
}
DeflateCompressor::DeflateCompressor(NonnullOwnPtr<LittleEndianOutputBitStream> stream, CompressionLevel compression_level)
: m_compression_level(compression_level)
, m_compression_constants(compression_constants[static_cast<int>(m_compression_level)])
, m_output_stream(move(stream))
{
m_symbol_frequencies.fill(0);
m_distance_frequencies.fill(0);
}
DeflateCompressor::~DeflateCompressor()
{
VERIFY(m_finished);
}
ErrorOr<Bytes> DeflateCompressor::read_some(Bytes)
{
return Error::from_errno(EBADF);
}
ErrorOr<size_t> DeflateCompressor::write_some(ReadonlyBytes bytes)
{
VERIFY(!m_finished);
size_t total_written = 0;
while (!bytes.is_empty()) {
auto n_written = bytes.copy_trimmed_to(pending_block().slice(m_pending_block_size));
m_pending_block_size += n_written;
if (m_pending_block_size == block_size)
TRY(flush());
bytes = bytes.slice(n_written);
total_written += n_written;
}
return total_written;
}
bool DeflateCompressor::is_eof() const
{
return true;
}
bool DeflateCompressor::is_open() const
{
return m_output_stream->is_open();
}
void DeflateCompressor::close()
{
}
// Knuth's multiplicative hash on 4 bytes
u16 DeflateCompressor::hash_sequence(u8 const* bytes)
{
constexpr u32 const knuth_constant = 2654435761; // shares no common factors with 2^32
return ((bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24) * knuth_constant) >> (32 - hash_bits);
}
size_t DeflateCompressor::compare_match_candidate(size_t start, size_t candidate, size_t previous_match_length, size_t maximum_match_length)
{
VERIFY(previous_match_length < maximum_match_length);
// We firstly check that the match is at least (prev_match_length + 1) long, we check backwards as there's a higher chance the end mismatches
for (ssize_t i = previous_match_length; i >= 0; i--) {
if (m_rolling_window[start + i] != m_rolling_window[candidate + i])
return 0;
}
// Find the actual length
auto match_length = previous_match_length + 1;
while (match_length < maximum_match_length && m_rolling_window[start + match_length] == m_rolling_window[candidate + match_length]) {
match_length++;
}
VERIFY(match_length > previous_match_length);
VERIFY(match_length <= maximum_match_length);
return match_length;
}
size_t DeflateCompressor::find_back_match(size_t start, u16 hash, size_t previous_match_length, size_t maximum_match_length, size_t& match_position)
{
auto max_chain_length = m_compression_constants.max_chain;
if (previous_match_length == 0)
previous_match_length = min_match_length - 1; // we only care about matches that are at least min_match_length long
if (previous_match_length >= maximum_match_length)
return 0; // we can't improve a maximum length match
if (previous_match_length >= m_compression_constants.max_lazy_length)
return 0; // the previous match is already pretty, we shouldn't waste another full search
if (previous_match_length >= m_compression_constants.good_match_length)
max_chain_length /= 4; // we already have a pretty good much, so do a shorter search
auto candidate = m_hash_head[hash];
auto match_found = false;
while (max_chain_length--) {
if (candidate == empty_slot)
break; // no remaining candidates
VERIFY(candidate < start);
if (start - candidate > window_size)
break; // outside the window
auto match_length = compare_match_candidate(start, candidate, previous_match_length, maximum_match_length);
if (match_length != 0) {
match_found = true;
match_position = candidate;
previous_match_length = match_length;
if (match_length == maximum_match_length)
return match_length; // bail if we got the maximum possible length
}
candidate = m_hash_prev[candidate % window_size];
}
if (!match_found)
return 0; // we didn't find any matches
return previous_match_length; // we found matches, but they were at most previous_match_length long
}
ALWAYS_INLINE u8 DeflateCompressor::distance_to_base(u16 distance)
{
return (distance <= 256) ? distance_to_base_lo[distance - 1] : distance_to_base_hi[(distance - 1) >> 7];
}
void DeflateCompressor::lz77_compress_block()
{
for (auto& slot : m_hash_head) { // initialize chained hash table
slot = empty_slot;
}
auto insert_hash = [&](auto pos, auto hash) {
auto window_pos = pos % window_size;
m_hash_prev[window_pos] = m_hash_head[hash];
m_hash_head[hash] = window_pos;
};
auto emit_literal = [&](auto literal) {
VERIFY(m_pending_symbol_size <= block_size + 1);
auto index = m_pending_symbol_size++;
m_symbol_buffer[index].distance = 0;
m_symbol_buffer[index].literal = literal;
m_symbol_frequencies[literal]++;
};
auto emit_back_reference = [&](auto distance, auto length) {
VERIFY(m_pending_symbol_size <= block_size + 1);
auto index = m_pending_symbol_size++;
m_symbol_buffer[index].distance = distance;
m_symbol_buffer[index].length = length;
m_symbol_frequencies[length_to_symbol[length]]++;
m_distance_frequencies[distance_to_base(distance)]++;
};
size_t previous_match_length = 0;
size_t previous_match_position = 0;
VERIFY(m_compression_constants.great_match_length <= max_match_length);
// our block starts at block_size and is m_pending_block_size in length
auto block_end = block_size + m_pending_block_size;
size_t current_position;
for (current_position = block_size; current_position < block_end - min_match_length + 1; current_position++) {
auto hash = hash_sequence(&m_rolling_window[current_position]);
size_t match_position;
auto match_length = find_back_match(current_position, hash, previous_match_length,
min(m_compression_constants.great_match_length, block_end - current_position), match_position);
insert_hash(current_position, hash);
// if the previous match is as good as the new match, just use it
if (previous_match_length != 0 && previous_match_length >= match_length) {
emit_back_reference((current_position - 1) - previous_match_position, previous_match_length);
// skip all the bytes that are included in this match
for (size_t j = current_position + 1; j < min(current_position - 1 + previous_match_length, block_end - min_match_length + 1); j++) {
insert_hash(j, hash_sequence(&m_rolling_window[j]));
}
current_position = (current_position - 1) + previous_match_length - 1;
previous_match_length = 0;
continue;
}
if (match_length == 0) {
VERIFY(previous_match_length == 0);
emit_literal(m_rolling_window[current_position]);
continue;
}
// if this is a lazy match, and the new match is better than the old one, output previous as literal
if (previous_match_length != 0) {
emit_literal(m_rolling_window[current_position - 1]);
}
previous_match_length = match_length;
previous_match_position = match_position;
}
// clean up leftover lazy match
if (previous_match_length != 0) {
emit_back_reference((current_position - 1) - previous_match_position, previous_match_length);
current_position = (current_position - 1) + previous_match_length;
}
// output remaining literals
while (current_position < block_end) {
emit_literal(m_rolling_window[current_position++]);
}
}
size_t DeflateCompressor::huffman_block_length(Array<u8, max_huffman_literals> const& literal_bit_lengths, Array<u8, max_huffman_distances> const& distance_bit_lengths)
{
size_t length = 0;
for (size_t i = 0; i < 286; i++) {
auto frequency = m_symbol_frequencies[i];
length += literal_bit_lengths[i] * frequency;
if (i >= 257) // back reference length symbols
length += packed_length_symbols[i - 257].extra_bits * frequency;
}
for (size_t i = 0; i < 30; i++) {
auto frequency = m_distance_frequencies[i];
length += distance_bit_lengths[i] * frequency;
length += packed_distances[i].extra_bits * frequency;
}
return length;
}
size_t DeflateCompressor::uncompressed_block_length()
{
auto padding = 8 - ((m_output_stream->bit_offset() + 3) % 8);
// 3 bit block header + align to byte + 2 * 16 bit length fields + block contents
return 3 + padding + (2 * 16) + m_pending_block_size * 8;
}
size_t DeflateCompressor::fixed_block_length()
{
// block header + fixed huffman encoded block contents
return 3 + huffman_block_length(fixed_literal_bit_lengths, fixed_distance_bit_lengths);
}
size_t DeflateCompressor::dynamic_block_length(Array<u8, max_huffman_literals> const& literal_bit_lengths, Array<u8, max_huffman_distances> const& distance_bit_lengths, Array<u8, 19> const& code_lengths_bit_lengths, Array<u16, 19> const& code_lengths_frequencies, size_t code_lengths_count)
{
// block header + literal code count + distance code count + code length count
auto length = 3 + 5 + 5 + 4;
// 3 bits per code_length
length += 3 * code_lengths_count;
for (size_t i = 0; i < code_lengths_frequencies.size(); i++) {
auto frequency = code_lengths_frequencies[i];
length += code_lengths_bit_lengths[i] * frequency;
if (i == deflate_special_code_length_copy) {
length += 2 * frequency;
} else if (i == deflate_special_code_length_zeros) {
length += 3 * frequency;
} else if (i == deflate_special_code_length_long_zeros) {
length += 7 * frequency;
}
}
return length + huffman_block_length(literal_bit_lengths, distance_bit_lengths);
}
ErrorOr<void> DeflateCompressor::write_huffman(CanonicalCode const& literal_code, Optional<CanonicalCode> const& distance_code)
{
auto has_distances = distance_code.has_value();
for (size_t i = 0; i < m_pending_symbol_size; i++) {
if (m_symbol_buffer[i].distance == 0) {
TRY(literal_code.write_symbol(*m_output_stream, m_symbol_buffer[i].literal));
continue;
}
VERIFY(has_distances);
auto symbol = length_to_symbol[m_symbol_buffer[i].length];
TRY(literal_code.write_symbol(*m_output_stream, symbol));
// Emit extra bits if needed
TRY(m_output_stream->write_bits<u16>(m_symbol_buffer[i].length - packed_length_symbols[symbol - 257].base_length, packed_length_symbols[symbol - 257].extra_bits));
auto base_distance = distance_to_base(m_symbol_buffer[i].distance);
TRY(distance_code.value().write_symbol(*m_output_stream, base_distance));
// Emit extra bits if needed
TRY(m_output_stream->write_bits<u16>(m_symbol_buffer[i].distance - packed_distances[base_distance].base_distance, packed_distances[base_distance].extra_bits));
}
return {};
}
size_t DeflateCompressor::encode_huffman_lengths(ReadonlyBytes lengths, Array<code_length_symbol, max_huffman_literals + max_huffman_distances>& encoded_lengths)
{
size_t encoded_count = 0;
size_t i = 0;
while (i < lengths.size()) {
if (lengths[i] == 0) {
auto zero_count = 0;
for (size_t j = i; j < min(lengths.size(), i + 138) && lengths[j] == 0; j++)
zero_count++;
if (zero_count < 3) { // below minimum repeated zero count
encoded_lengths[encoded_count++].symbol = 0;
i++;
continue;
}
if (zero_count <= 10) {
encoded_lengths[encoded_count].symbol = deflate_special_code_length_zeros;
encoded_lengths[encoded_count++].count = zero_count;
} else {
encoded_lengths[encoded_count].symbol = deflate_special_code_length_long_zeros;
encoded_lengths[encoded_count++].count = zero_count;
}
i += zero_count;
continue;
}
encoded_lengths[encoded_count++].symbol = lengths[i++];
auto copy_count = 0;
for (size_t j = i; j < min(lengths.size(), i + 6) && lengths[j] == lengths[i - 1]; j++)
copy_count++;
if (copy_count >= 3) {
encoded_lengths[encoded_count].symbol = deflate_special_code_length_copy;
encoded_lengths[encoded_count++].count = copy_count;
i += copy_count;
continue;
}
}
return encoded_count;
}
size_t DeflateCompressor::encode_block_lengths(Array<u8, max_huffman_literals> const& literal_bit_lengths, Array<u8, max_huffman_distances> const& distance_bit_lengths, Array<code_length_symbol, max_huffman_literals + max_huffman_distances>& encoded_lengths, size_t& literal_code_count, size_t& distance_code_count)
{
literal_code_count = max_huffman_literals;
distance_code_count = max_huffman_distances;
VERIFY(literal_bit_lengths[EndOfBlock] != 0); // Make sure at least the EndOfBlock marker is present
while (literal_bit_lengths[literal_code_count - 1] == 0)
literal_code_count--;
// Drop trailing zero lengths, keeping at least one
while (distance_bit_lengths[distance_code_count - 1] == 0 && distance_code_count > 1)
distance_code_count--;
Array<u8, max_huffman_literals + max_huffman_distances> all_lengths {};
for (size_t i = 0; i < literal_code_count; i++)
all_lengths[i] = literal_bit_lengths[i];
for (size_t i = 0; i < distance_code_count; i++)
all_lengths[literal_code_count + i] = distance_bit_lengths[i];
return encode_huffman_lengths(all_lengths.span().trim(literal_code_count + distance_code_count), encoded_lengths);
}
ErrorOr<void> DeflateCompressor::write_dynamic_huffman(CanonicalCode const& literal_code, size_t literal_code_count, Optional<CanonicalCode> const& distance_code, size_t distance_code_count, Array<u8, 19> const& code_lengths_bit_lengths, size_t code_length_count, Array<code_length_symbol, max_huffman_literals + max_huffman_distances> const& encoded_lengths, size_t encoded_lengths_count)
{
TRY(m_output_stream->write_bits(literal_code_count - 257, 5));
TRY(m_output_stream->write_bits(distance_code_count - 1, 5));
TRY(m_output_stream->write_bits(code_length_count - 4, 4));
for (size_t i = 0; i < code_length_count; i++) {
TRY(m_output_stream->write_bits(code_lengths_bit_lengths[code_lengths_code_lengths_order[i]], 3));
}
auto code_lengths_code = MUST(CanonicalCode::from_bytes(code_lengths_bit_lengths));
for (size_t i = 0; i < encoded_lengths_count; i++) {
auto encoded_length = encoded_lengths[i];
TRY(code_lengths_code.write_symbol(*m_output_stream, encoded_length.symbol));
if (encoded_length.symbol == deflate_special_code_length_copy) {
TRY(m_output_stream->write_bits<u8>(encoded_length.count - 3, 2));
} else if (encoded_length.symbol == deflate_special_code_length_zeros) {
TRY(m_output_stream->write_bits<u8>(encoded_length.count - 3, 3));
} else if (encoded_length.symbol == deflate_special_code_length_long_zeros) {
TRY(m_output_stream->write_bits<u8>(encoded_length.count - 11, 7));
}
}
TRY(write_huffman(literal_code, distance_code));
return {};
}
ErrorOr<void> DeflateCompressor::flush()
{
TRY(m_output_stream->write_bits(m_finished, 1));
// if this is just an empty block to signify the end of the deflate stream use the smallest block possible (10 bits total)
if (m_pending_block_size == 0) {
VERIFY(m_finished); // we shouldn't be writing empty blocks unless this is the final one
TRY(m_output_stream->write_bits(0b01u, 2)); // fixed huffman codes
TRY(m_output_stream->write_bits(0b0000000u, 7)); // end of block symbol
TRY(m_output_stream->align_to_byte_boundary());
return {};
}
auto write_uncompressed = [&]() -> ErrorOr<void> {
TRY(m_output_stream->write_bits(0b00u, 2)); // no compression
TRY(m_output_stream->align_to_byte_boundary());
TRY(m_output_stream->write_value<LittleEndian<u16>>(m_pending_block_size));
TRY(m_output_stream->write_value<LittleEndian<u16>>(~m_pending_block_size));
TRY(m_output_stream->write_until_depleted(pending_block().slice(0, m_pending_block_size)));
return {};
};
if (m_compression_level == CompressionLevel::STORE) { // disabled compression fast path
TRY(write_uncompressed());
m_pending_block_size = 0;
return {};
}
// The following implementation of lz77 compression and huffman encoding is based on the reference implementation by Hans Wennborg https://www.hanshq.net/zip.html
// this reads from the pending block and writes to m_symbol_buffer
lz77_compress_block();
// insert EndOfBlock marker to the symbol buffer
m_symbol_buffer[m_pending_symbol_size].distance = 0;
m_symbol_buffer[m_pending_symbol_size++].literal = EndOfBlock;
m_symbol_frequencies[EndOfBlock]++;
// generate optimal dynamic huffman code lengths
Array<u8, max_huffman_literals> dynamic_literal_bit_lengths {};
Array<u8, max_huffman_distances> dynamic_distance_bit_lengths {};
generate_huffman_lengths(dynamic_literal_bit_lengths, m_symbol_frequencies, 15); // deflate data huffman can use up to 15 bits per symbol
generate_huffman_lengths(dynamic_distance_bit_lengths, m_distance_frequencies, 15);
// encode literal and distance lengths together in deflate format
Array<code_length_symbol, max_huffman_literals + max_huffman_distances> encoded_lengths {};
size_t literal_code_count;
size_t distance_code_count;
auto encoded_lengths_count = encode_block_lengths(dynamic_literal_bit_lengths, dynamic_distance_bit_lengths, encoded_lengths, literal_code_count, distance_code_count);
// count code length frequencies
Array<u16, 19> code_lengths_frequencies { 0 };
for (size_t i = 0; i < encoded_lengths_count; i++) {
code_lengths_frequencies[encoded_lengths[i].symbol]++;
}
// generate optimal huffman code lengths code lengths
Array<u8, 19> code_lengths_bit_lengths {};
generate_huffman_lengths(code_lengths_bit_lengths, code_lengths_frequencies, 7); // deflate code length huffman can use up to 7 bits per symbol
// calculate actual code length code lengths count (without trailing zeros)
auto code_lengths_count = code_lengths_bit_lengths.size();
while (code_lengths_bit_lengths[code_lengths_code_lengths_order[code_lengths_count - 1]] == 0)
code_lengths_count--;
auto uncompressed_size = uncompressed_block_length();
auto fixed_huffman_size = fixed_block_length();
auto dynamic_huffman_size = dynamic_block_length(dynamic_literal_bit_lengths, dynamic_distance_bit_lengths, code_lengths_bit_lengths, code_lengths_frequencies, code_lengths_count);
// If the compression somehow didn't reduce the size enough, just write out the block uncompressed as it allows for much faster decompression
if (uncompressed_size <= min(fixed_huffman_size, dynamic_huffman_size)) {
TRY(write_uncompressed());
} else if (fixed_huffman_size <= dynamic_huffman_size) {
// If the fixed and dynamic huffman codes come out the same size, prefer the fixed version, as it takes less time to decode fixed huffman codes.
TRY(m_output_stream->write_bits(0b01u, 2));
TRY(write_huffman(CanonicalCode::fixed_literal_codes(), CanonicalCode::fixed_distance_codes()));
} else {
// dynamic huffman codes
TRY(m_output_stream->write_bits(0b10u, 2));
auto literal_code = MUST(CanonicalCode::from_bytes(dynamic_literal_bit_lengths));
auto distance_code_or_error = CanonicalCode::from_bytes(dynamic_distance_bit_lengths);
Optional<CanonicalCode> distance_code;
if (!distance_code_or_error.is_error())
distance_code = distance_code_or_error.release_value();
TRY(write_dynamic_huffman(literal_code, literal_code_count, distance_code, distance_code_count, code_lengths_bit_lengths, code_lengths_count, encoded_lengths, encoded_lengths_count));
}
if (m_finished)
TRY(m_output_stream->align_to_byte_boundary());
// reset all block specific members
m_pending_block_size = 0;
m_pending_symbol_size = 0;
m_symbol_frequencies.fill(0);
m_distance_frequencies.fill(0);
// On the final block this copy will potentially produce an invalid search window, but since its the final block we dont care
pending_block().copy_trimmed_to({ m_rolling_window, block_size });
return {};
}
ErrorOr<void> DeflateCompressor::final_flush()
{
VERIFY(!m_finished);
m_finished = true;
TRY(flush());
TRY(m_output_stream->flush_buffer_to_stream());
return {};
}
ErrorOr<ByteBuffer> DeflateCompressor::compress_all(ReadonlyBytes bytes, CompressionLevel compression_level)
{
auto output_stream = TRY(try_make<AllocatingMemoryStream>());
auto deflate_stream = TRY(DeflateCompressor::construct(MaybeOwned<Stream>(*output_stream), compression_level));
TRY(deflate_stream->write_until_depleted(bytes));
TRY(deflate_stream->final_flush());
auto buffer = TRY(ByteBuffer::create_uninitialized(output_stream->used_buffer_size()));
TRY(output_stream->read_until_filled(buffer));
return buffer;
}
}