mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-25 17:10:23 +00:00
308 lines
12 KiB
C++
308 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2020, Ben Wiederhake <BenWiederhake.GitHub@gmx.de>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Types.h>
|
|
|
|
namespace AK {
|
|
|
|
/**
|
|
* This implements a "distinct" numeric type that is intentionally incompatible
|
|
* to other incantations. The intention is that each "distinct" type that you
|
|
* want simply gets different values for `fn_length` and `line`. The macros
|
|
* `TYPEDEF_DISTINCT_NUMERIC_*()` at the bottom of `DistinctNumeric.h`.
|
|
*
|
|
* `Incr`, `Cmp`, `Bool`, `Flags`, `Shift`, and `Arith` simply split up the
|
|
* space of operators into 6 simple categories:
|
|
* - No matter the values of these, `DistinctNumeric` always implements `==` and `!=`.
|
|
* - If `Incr` is true, then `++a`, `a++`, `--a`, and `a--` are implemented.
|
|
* - If `Cmp` is true, then `a>b`, `a<b`, `a>=b`, and `a<=b` are implemented.
|
|
* - If `Bool` is true, then `!a`, `a&&b`, and `a||b` are implemented (but not `operator bool()`, because of overzealous integer promotion rules).
|
|
* - If `Flags` is true, then `~a`, `a&b`, `a|b`, `a^b`, `a&=b`, `a|=b`, and `a^=b` are implemented.
|
|
* - If `Shift` is true, then `a<<b`, `a>>b`, `a<<=b`, `a>>=b` are implemented.
|
|
* - If `Arith` is true, then `a+b`, `a-b`, `+a`, `-a`, `a*b`, `a/b`, `a%b`, and the respective `a_=b` versions are implemented.
|
|
* The semantics are always those of the underlying basic type `T`.
|
|
*
|
|
* These can be combined arbitrarily. Want a numeric type that supports `++a`
|
|
* and `a >> b` but not `a > b`? Sure thing, just set
|
|
* `Incr=true, Cmp=false, Shift=true` and you're done!
|
|
* Furthermore, some of these overloads make more sense with specific types, like `a&&b` which should be able to operate
|
|
*
|
|
* I intentionally decided against overloading `&a` because these shall remain
|
|
* numeric types.
|
|
*
|
|
* The C++20 `operator<=>` would require, among other things `std::weak_equality`.
|
|
* Since we do not have that, it cannot be implemented.
|
|
*
|
|
* The are many operators that do not work on `int`, so I left them out:
|
|
* `a[b]`, `*a`, `a->b`, `a.b`, `a->*b`, `a.*b`.
|
|
*
|
|
* There are many more operators that do not make sense for numerical types,
|
|
* or cannot be overloaded in the first place. Naturally, they are not implemented.
|
|
*/
|
|
template<typename T, bool Incr, bool Cmp, bool Bool, bool Flags, bool Shift, bool Arith, typename X>
|
|
class DistinctNumeric {
|
|
typedef DistinctNumeric<T, Incr, Cmp, Bool, Flags, Shift, Arith, X> Self;
|
|
|
|
public:
|
|
DistinctNumeric(T value)
|
|
: m_value { value }
|
|
{
|
|
}
|
|
|
|
const T& value() const { return m_value; }
|
|
|
|
// Always implemented: identity.
|
|
bool operator==(const Self& other) const
|
|
{
|
|
return this->m_value == other.m_value;
|
|
}
|
|
bool operator!=(const Self& other) const
|
|
{
|
|
return this->m_value != other.m_value;
|
|
}
|
|
|
|
// Only implemented when `Incr` is true:
|
|
Self& operator++()
|
|
{
|
|
static_assert(Incr, "'++a' is only available for DistinctNumeric types with 'Incr'.");
|
|
this->m_value += 1;
|
|
return *this;
|
|
}
|
|
Self operator++(int)
|
|
{
|
|
static_assert(Incr, "'a++' is only available for DistinctNumeric types with 'Incr'.");
|
|
Self ret = this->m_value;
|
|
this->m_value += 1;
|
|
return ret;
|
|
}
|
|
Self& operator--()
|
|
{
|
|
static_assert(Incr, "'--a' is only available for DistinctNumeric types with 'Incr'.");
|
|
this->m_value -= 1;
|
|
return *this;
|
|
}
|
|
Self operator--(int)
|
|
{
|
|
static_assert(Incr, "'a--' is only available for DistinctNumeric types with 'Incr'.");
|
|
Self ret = this->m_value;
|
|
this->m_value -= 1;
|
|
return ret;
|
|
}
|
|
|
|
// Only implemented when `Cmp` is true:
|
|
bool operator>(const Self& other) const
|
|
{
|
|
static_assert(Cmp, "'a>b' is only available for DistinctNumeric types with 'Cmp'.");
|
|
return this->m_value > other.m_value;
|
|
}
|
|
bool operator<(const Self& other) const
|
|
{
|
|
static_assert(Cmp, "'a<b' is only available for DistinctNumeric types with 'Cmp'.");
|
|
return this->m_value < other.m_value;
|
|
}
|
|
bool operator>=(const Self& other) const
|
|
{
|
|
static_assert(Cmp, "'a>=b' is only available for DistinctNumeric types with 'Cmp'.");
|
|
return this->m_value >= other.m_value;
|
|
}
|
|
bool operator<=(const Self& other) const
|
|
{
|
|
static_assert(Cmp, "'a<=b' is only available for DistinctNumeric types with 'Cmp'.");
|
|
return this->m_value <= other.m_value;
|
|
}
|
|
// 'operator<=>' cannot be implemented. See class comment.
|
|
|
|
// Only implemented when `bool` is true:
|
|
bool operator!() const
|
|
{
|
|
static_assert(Bool, "'!a' is only available for DistinctNumeric types with 'Bool'.");
|
|
return !this->m_value;
|
|
}
|
|
bool operator&&(const Self& other) const
|
|
{
|
|
static_assert(Bool, "'a&&b' is only available for DistinctNumeric types with 'Bool'.");
|
|
return this->m_value && other.m_value;
|
|
}
|
|
bool operator||(const Self& other) const
|
|
{
|
|
static_assert(Bool, "'a||b' is only available for DistinctNumeric types with 'Bool'.");
|
|
return this->m_value || other.m_value;
|
|
}
|
|
// Intentionally don't define `operator bool() const` here. C++ is a bit
|
|
// overzealos, and whenever there would be a type error, C++ instead tries
|
|
// to convert to a common int-ish type first. `bool` is int-ish, so
|
|
// `operator bool() const` would defy the entire point of this class.
|
|
|
|
// Only implemented when `Flags` is true:
|
|
Self operator~() const
|
|
{
|
|
static_assert(Flags, "'~a' is only available for DistinctNumeric types with 'Flags'.");
|
|
return ~this->m_value;
|
|
}
|
|
Self operator&(const Self& other) const
|
|
{
|
|
static_assert(Flags, "'a&b' is only available for DistinctNumeric types with 'Flags'.");
|
|
return this->m_value & other.m_value;
|
|
}
|
|
Self operator|(const Self& other) const
|
|
{
|
|
static_assert(Flags, "'a|b' is only available for DistinctNumeric types with 'Flags'.");
|
|
return this->m_value | other.m_value;
|
|
}
|
|
Self operator^(const Self& other) const
|
|
{
|
|
static_assert(Flags, "'a^b' is only available for DistinctNumeric types with 'Flags'.");
|
|
return this->m_value ^ other.m_value;
|
|
}
|
|
Self& operator&=(const Self& other)
|
|
{
|
|
static_assert(Flags, "'a&=b' is only available for DistinctNumeric types with 'Flags'.");
|
|
this->m_value &= other.m_value;
|
|
return *this;
|
|
}
|
|
Self& operator|=(const Self& other)
|
|
{
|
|
static_assert(Flags, "'a|=b' is only available for DistinctNumeric types with 'Flags'.");
|
|
this->m_value |= other.m_value;
|
|
return *this;
|
|
}
|
|
Self& operator^=(const Self& other)
|
|
{
|
|
static_assert(Flags, "'a^=b' is only available for DistinctNumeric types with 'Flags'.");
|
|
this->m_value ^= other.m_value;
|
|
return *this;
|
|
}
|
|
|
|
// Only implemented when `Shift` is true:
|
|
// TODO: Should this take `int` instead?
|
|
Self operator<<(const Self& other) const
|
|
{
|
|
static_assert(Shift, "'a<<b' is only available for DistinctNumeric types with 'Shift'.");
|
|
return this->m_value << other.m_value;
|
|
}
|
|
Self operator>>(const Self& other) const
|
|
{
|
|
static_assert(Shift, "'a>>b' is only available for DistinctNumeric types with 'Shift'.");
|
|
return this->m_value >> other.m_value;
|
|
}
|
|
Self& operator<<=(const Self& other)
|
|
{
|
|
static_assert(Shift, "'a<<=b' is only available for DistinctNumeric types with 'Shift'.");
|
|
this->m_value <<= other.m_value;
|
|
return *this;
|
|
}
|
|
Self& operator>>=(const Self& other)
|
|
{
|
|
static_assert(Shift, "'a>>=b' is only available for DistinctNumeric types with 'Shift'.");
|
|
this->m_value >>= other.m_value;
|
|
return *this;
|
|
}
|
|
|
|
// Only implemented when `Arith` is true:
|
|
Self operator+(const Self& other) const
|
|
{
|
|
static_assert(Arith, "'a+b' is only available for DistinctNumeric types with 'Arith'.");
|
|
return this->m_value + other.m_value;
|
|
}
|
|
Self operator-(const Self& other) const
|
|
{
|
|
static_assert(Arith, "'a-b' is only available for DistinctNumeric types with 'Arith'.");
|
|
return this->m_value - other.m_value;
|
|
}
|
|
Self operator+() const
|
|
{
|
|
static_assert(Arith, "'+a' is only available for DistinctNumeric types with 'Arith'.");
|
|
return +this->m_value;
|
|
}
|
|
Self operator-() const
|
|
{
|
|
static_assert(Arith, "'-a' is only available for DistinctNumeric types with 'Arith'.");
|
|
return -this->m_value;
|
|
}
|
|
Self operator*(const Self& other) const
|
|
{
|
|
static_assert(Arith, "'a*b' is only available for DistinctNumeric types with 'Arith'.");
|
|
return this->m_value * other.m_value;
|
|
}
|
|
Self operator/(const Self& other) const
|
|
{
|
|
static_assert(Arith, "'a/b' is only available for DistinctNumeric types with 'Arith'.");
|
|
return this->m_value / other.m_value;
|
|
}
|
|
Self operator%(const Self& other) const
|
|
{
|
|
static_assert(Arith, "'a%b' is only available for DistinctNumeric types with 'Arith'.");
|
|
return this->m_value % other.m_value;
|
|
}
|
|
Self& operator+=(const Self& other)
|
|
{
|
|
static_assert(Arith, "'a+=b' is only available for DistinctNumeric types with 'Arith'.");
|
|
this->m_value += other.m_value;
|
|
return *this;
|
|
}
|
|
Self& operator-=(const Self& other)
|
|
{
|
|
static_assert(Arith, "'a+=b' is only available for DistinctNumeric types with 'Arith'.");
|
|
this->m_value += other.m_value;
|
|
return *this;
|
|
}
|
|
Self& operator*=(const Self& other)
|
|
{
|
|
static_assert(Arith, "'a*=b' is only available for DistinctNumeric types with 'Arith'.");
|
|
this->m_value *= other.m_value;
|
|
return *this;
|
|
}
|
|
Self& operator/=(const Self& other)
|
|
{
|
|
static_assert(Arith, "'a/=b' is only available for DistinctNumeric types with 'Arith'.");
|
|
this->m_value /= other.m_value;
|
|
return *this;
|
|
}
|
|
Self& operator%=(const Self& other)
|
|
{
|
|
static_assert(Arith, "'a%=b' is only available for DistinctNumeric types with 'Arith'.");
|
|
this->m_value %= other.m_value;
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
T m_value;
|
|
};
|
|
|
|
// TODO: When 'consteval' sufficiently-well supported by host compilers, try to
|
|
// provide a more usable interface like this one:
|
|
// https://gist.github.com/alimpfard/a3b750e8c3a2f44fb3a2d32038968ddf
|
|
|
|
}
|
|
|
|
#define TYPEDEF_DISTINCT_NUMERIC_GENERAL(T, Incr, Cmp, Bool, Flags, Shift, Arith, NAME) \
|
|
typedef DistinctNumeric<T, Incr, Cmp, Bool, Flags, Shift, Arith, struct __##NAME##_tag> NAME
|
|
#define TYPEDEF_DISTINCT_ORDERED_ID(T, NAME) TYPEDEF_DISTINCT_NUMERIC_GENERAL(T, false, true, true, false, false, false, NAME)
|
|
// TODO: Further typedef's?
|
|
|
|
using AK::DistinctNumeric;
|