mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 23:50:19 +00:00
556 lines
19 KiB
C++
556 lines
19 KiB
C++
/*
|
|
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
|
|
* Copyright (c) 2022, Timon Kruiper <timonkruiper@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Singleton.h>
|
|
#include <AK/StdLibExtras.h>
|
|
#include <AK/Time.h>
|
|
#if ARCH(X86_64)
|
|
# include <Kernel/Arch/x86_64/Interrupts/APIC.h>
|
|
# include <Kernel/Arch/x86_64/RTC.h>
|
|
# include <Kernel/Arch/x86_64/Time/APICTimer.h>
|
|
# include <Kernel/Arch/x86_64/Time/HPET.h>
|
|
# include <Kernel/Arch/x86_64/Time/HPETComparator.h>
|
|
# include <Kernel/Arch/x86_64/Time/PIT.h>
|
|
# include <Kernel/Arch/x86_64/Time/RTC.h>
|
|
#elif ARCH(AARCH64)
|
|
# include <Kernel/Arch/aarch64/RPi/Timer.h>
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
|
|
#include <Kernel/Arch/CurrentTime.h>
|
|
#include <Kernel/Boot/CommandLine.h>
|
|
#include <Kernel/Firmware/ACPI/Parser.h>
|
|
#include <Kernel/Interrupts/InterruptDisabler.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/Tasks/PerformanceManager.h>
|
|
#include <Kernel/Tasks/Scheduler.h>
|
|
#include <Kernel/Time/HardwareTimer.h>
|
|
#include <Kernel/Time/TimeManagement.h>
|
|
#include <Kernel/Time/TimerQueue.h>
|
|
|
|
namespace Kernel {
|
|
|
|
static Singleton<TimeManagement> s_the;
|
|
|
|
bool TimeManagement::is_initialized()
|
|
{
|
|
return s_the.is_initialized();
|
|
}
|
|
|
|
TimeManagement& TimeManagement::the()
|
|
{
|
|
return *s_the;
|
|
}
|
|
|
|
// The s_scheduler_specific_current_time function provides a current time for scheduling purposes,
|
|
// which may not necessarily relate to wall time
|
|
static u64 (*s_scheduler_current_time)();
|
|
|
|
static u64 current_time_monotonic()
|
|
{
|
|
// We always need a precise timestamp here, we cannot rely on a coarse timestamp
|
|
return (u64)TimeManagement::the().monotonic_time(TimePrecision::Precise).nanoseconds();
|
|
}
|
|
|
|
u64 TimeManagement::scheduler_current_time()
|
|
{
|
|
VERIFY(s_scheduler_current_time);
|
|
return s_scheduler_current_time();
|
|
}
|
|
|
|
ErrorOr<void> TimeManagement::validate_clock_id(clockid_t clock_id)
|
|
{
|
|
switch (clock_id) {
|
|
case CLOCK_MONOTONIC:
|
|
case CLOCK_MONOTONIC_COARSE:
|
|
case CLOCK_MONOTONIC_RAW:
|
|
case CLOCK_REALTIME:
|
|
case CLOCK_REALTIME_COARSE:
|
|
return {};
|
|
default:
|
|
return EINVAL;
|
|
};
|
|
}
|
|
|
|
Duration TimeManagement::current_time(clockid_t clock_id) const
|
|
{
|
|
switch (clock_id) {
|
|
case CLOCK_MONOTONIC:
|
|
return monotonic_time(TimePrecision::Precise).time_since_start({});
|
|
case CLOCK_MONOTONIC_COARSE:
|
|
return monotonic_time(TimePrecision::Coarse).time_since_start({});
|
|
case CLOCK_MONOTONIC_RAW:
|
|
return monotonic_time_raw().time_since_start({});
|
|
case CLOCK_REALTIME:
|
|
return epoch_time(TimePrecision::Precise).offset_to_epoch();
|
|
case CLOCK_REALTIME_COARSE:
|
|
return epoch_time(TimePrecision::Coarse).offset_to_epoch();
|
|
default:
|
|
// Syscall entrypoint is missing a is_valid_clock_id(..) check?
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
bool TimeManagement::is_system_timer(HardwareTimerBase const& timer) const
|
|
{
|
|
return &timer == m_system_timer.ptr();
|
|
}
|
|
|
|
void TimeManagement::set_epoch_time(UnixDateTime ts)
|
|
{
|
|
// FIXME: The interrupt disabler intends to enforce atomic update of epoch time and remaining adjustment,
|
|
// but that sort of assumption is known to break on SMP.
|
|
InterruptDisabler disabler;
|
|
m_epoch_time = ts;
|
|
m_remaining_epoch_time_adjustment = {};
|
|
}
|
|
|
|
MonotonicTime TimeManagement::monotonic_time(TimePrecision precision) const
|
|
{
|
|
// This is the time when last updated by an interrupt.
|
|
u64 seconds;
|
|
u32 ticks;
|
|
|
|
bool do_query = precision == TimePrecision::Precise && m_can_query_precise_time;
|
|
|
|
u32 update_iteration;
|
|
do {
|
|
update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
|
|
seconds = m_seconds_since_boot;
|
|
ticks = m_ticks_this_second;
|
|
|
|
if (do_query) {
|
|
#if ARCH(X86_64)
|
|
// We may have to do this over again if the timer interrupt fires
|
|
// while we're trying to query the information. In that case, our
|
|
// seconds and ticks became invalid, producing an incorrect time.
|
|
// Be sure to not modify m_seconds_since_boot and m_ticks_this_second
|
|
// because this may only be modified by the interrupt handler
|
|
HPET::the().update_time(seconds, ticks, true);
|
|
#elif ARCH(AARCH64)
|
|
// FIXME: Get rid of these horrible casts
|
|
const_cast<RPi::Timer*>(static_cast<RPi::Timer const*>(m_system_timer.ptr()))->update_time(seconds, ticks, true);
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
}
|
|
} while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));
|
|
|
|
VERIFY(m_time_ticks_per_second > 0);
|
|
VERIFY(ticks < m_time_ticks_per_second);
|
|
u64 ns = ((u64)ticks * 1000000000ull) / m_time_ticks_per_second;
|
|
VERIFY(ns < 1000000000ull);
|
|
return MonotonicTime::from_hardware_time({}, seconds, ns);
|
|
}
|
|
|
|
UnixDateTime TimeManagement::epoch_time(TimePrecision) const
|
|
{
|
|
// TODO: Take into account precision
|
|
UnixDateTime time;
|
|
u32 update_iteration;
|
|
do {
|
|
update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
|
|
time = m_epoch_time;
|
|
} while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));
|
|
return time;
|
|
}
|
|
|
|
u64 TimeManagement::uptime_ms() const
|
|
{
|
|
auto mtime = monotonic_time().time_since_start({}).to_timespec();
|
|
// This overflows after 292 million years of uptime.
|
|
// Since this is only used for performance timestamps and sys$times, that's probably enough.
|
|
u64 ms = mtime.tv_sec * 1000ull;
|
|
ms += mtime.tv_nsec / 1000000;
|
|
return ms;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT void TimeManagement::initialize([[maybe_unused]] u32 cpu)
|
|
{
|
|
// Note: We must disable interrupts, because the timers interrupt might fire before
|
|
// the TimeManagement class is completely initialized.
|
|
InterruptDisabler disabler;
|
|
|
|
#if ARCH(X86_64)
|
|
if (cpu == 0) {
|
|
VERIFY(!s_the.is_initialized());
|
|
s_the.ensure_instance();
|
|
|
|
if (APIC::initialized()) {
|
|
// Initialize the APIC timers after the other timers as the
|
|
// initialization needs to briefly enable interrupts, which then
|
|
// would trigger a deadlock trying to get the s_the instance while
|
|
// creating it.
|
|
if (auto* apic_timer = APIC::the().initialize_timers(*s_the->m_system_timer)) {
|
|
dmesgln("Duration: Using APIC timer as system timer");
|
|
s_the->set_system_timer(*apic_timer);
|
|
}
|
|
}
|
|
} else {
|
|
VERIFY(s_the.is_initialized());
|
|
if (auto* apic_timer = APIC::the().get_timer()) {
|
|
dmesgln("Duration: Enable APIC timer on CPU #{}", cpu);
|
|
apic_timer->enable_local_timer();
|
|
}
|
|
}
|
|
#elif ARCH(AARCH64)
|
|
if (cpu == 0) {
|
|
VERIFY(!s_the.is_initialized());
|
|
s_the.ensure_instance();
|
|
}
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
auto* possible_arch_specific_current_time_function = optional_current_time();
|
|
if (possible_arch_specific_current_time_function)
|
|
s_scheduler_current_time = possible_arch_specific_current_time_function;
|
|
else
|
|
s_scheduler_current_time = current_time_monotonic;
|
|
}
|
|
|
|
void TimeManagement::set_system_timer(HardwareTimerBase& timer)
|
|
{
|
|
VERIFY(Processor::is_bootstrap_processor()); // This should only be called on the BSP!
|
|
auto original_callback = m_system_timer->set_callback(nullptr);
|
|
m_system_timer->disable();
|
|
timer.set_callback(move(original_callback));
|
|
m_system_timer = timer;
|
|
}
|
|
|
|
time_t TimeManagement::ticks_per_second() const
|
|
{
|
|
return m_time_keeper_timer->ticks_per_second();
|
|
}
|
|
|
|
UnixDateTime TimeManagement::boot_time()
|
|
{
|
|
#if ARCH(X86_64)
|
|
return RTC::boot_time();
|
|
#elif ARCH(AARCH64)
|
|
// FIXME: Return correct boot time
|
|
return UnixDateTime::epoch();
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
}
|
|
|
|
Duration TimeManagement::clock_resolution() const
|
|
{
|
|
long nanoseconds_per_tick = 1'000'000'000 / m_time_keeper_timer->ticks_per_second();
|
|
return Duration::from_nanoseconds(nanoseconds_per_tick);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT TimeManagement::TimeManagement()
|
|
: m_time_page_region(MM.allocate_kernel_region(PAGE_SIZE, "Duration page"sv, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value_but_fixme_should_propagate_errors())
|
|
{
|
|
#if ARCH(X86_64)
|
|
bool probe_non_legacy_hardware_timers = !(kernel_command_line().is_legacy_time_enabled());
|
|
if (ACPI::is_enabled()) {
|
|
if (!ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
|
|
RTC::initialize();
|
|
m_epoch_time += boot_time().offset_to_epoch();
|
|
} else {
|
|
dmesgln("ACPI: RTC CMOS Not present");
|
|
}
|
|
} else {
|
|
// We just assume that we can access RTC CMOS, if ACPI isn't usable.
|
|
RTC::initialize();
|
|
m_epoch_time += boot_time().offset_to_epoch();
|
|
}
|
|
if (probe_non_legacy_hardware_timers) {
|
|
if (!probe_and_set_x86_non_legacy_hardware_timers())
|
|
if (!probe_and_set_x86_legacy_hardware_timers())
|
|
VERIFY_NOT_REACHED();
|
|
} else if (!probe_and_set_x86_legacy_hardware_timers()) {
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
#elif ARCH(AARCH64)
|
|
probe_and_set_aarch64_hardware_timers();
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
}
|
|
|
|
UnixDateTime TimeManagement::now()
|
|
{
|
|
return s_the.ptr()->epoch_time();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_and_initialize_periodic_timers()
|
|
{
|
|
bool should_enable = is_hpet_periodic_mode_allowed();
|
|
dbgln("Duration: Scanning for periodic timers");
|
|
Vector<HardwareTimerBase*> timers;
|
|
for (auto& hardware_timer : m_hardware_timers) {
|
|
if (hardware_timer->is_periodic_capable()) {
|
|
timers.append(hardware_timer);
|
|
if (should_enable)
|
|
hardware_timer->set_periodic();
|
|
}
|
|
}
|
|
return timers;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_for_non_periodic_timers()
|
|
{
|
|
dbgln("Duration: Scanning for non-periodic timers");
|
|
Vector<HardwareTimerBase*> timers;
|
|
for (auto& hardware_timer : m_hardware_timers) {
|
|
if (!hardware_timer->is_periodic_capable())
|
|
timers.append(hardware_timer);
|
|
}
|
|
return timers;
|
|
}
|
|
|
|
bool TimeManagement::is_hpet_periodic_mode_allowed()
|
|
{
|
|
switch (kernel_command_line().hpet_mode()) {
|
|
case HPETMode::Periodic:
|
|
return true;
|
|
case HPETMode::NonPeriodic:
|
|
return false;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
#if ARCH(X86_64)
|
|
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_x86_non_legacy_hardware_timers()
|
|
{
|
|
if (!ACPI::is_enabled())
|
|
return false;
|
|
if (!HPET::test_and_initialize())
|
|
return false;
|
|
if (!HPET::the().comparators().size()) {
|
|
dbgln("HPET initialization aborted.");
|
|
return false;
|
|
}
|
|
dbgln("HPET: Setting appropriate functions to timers.");
|
|
|
|
for (auto& hpet_comparator : HPET::the().comparators())
|
|
m_hardware_timers.append(hpet_comparator);
|
|
|
|
auto periodic_timers = scan_and_initialize_periodic_timers();
|
|
auto non_periodic_timers = scan_for_non_periodic_timers();
|
|
|
|
if (is_hpet_periodic_mode_allowed())
|
|
VERIFY(!periodic_timers.is_empty());
|
|
|
|
VERIFY(periodic_timers.size() + non_periodic_timers.size() > 0);
|
|
|
|
size_t taken_periodic_timers_count = 0;
|
|
size_t taken_non_periodic_timers_count = 0;
|
|
|
|
if (periodic_timers.size() > taken_periodic_timers_count) {
|
|
m_system_timer = periodic_timers[taken_periodic_timers_count];
|
|
taken_periodic_timers_count += 1;
|
|
} else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
|
|
m_system_timer = non_periodic_timers[taken_non_periodic_timers_count];
|
|
taken_non_periodic_timers_count += 1;
|
|
}
|
|
|
|
m_system_timer->set_callback([this](RegisterState const& regs) {
|
|
// Update the time. We don't really care too much about the
|
|
// frequency of the interrupt because we'll query the main
|
|
// counter to get an accurate time.
|
|
if (Processor::is_bootstrap_processor()) {
|
|
// TODO: Have the other CPUs call system_timer_tick directly
|
|
increment_time_since_boot_hpet();
|
|
}
|
|
|
|
system_timer_tick(regs);
|
|
});
|
|
|
|
// Use the HPET main counter frequency for time purposes. This is likely
|
|
// a much higher frequency than the interrupt itself and allows us to
|
|
// keep a more accurate time
|
|
m_can_query_precise_time = true;
|
|
m_time_ticks_per_second = HPET::the().frequency();
|
|
|
|
m_system_timer->try_to_set_frequency(m_system_timer->calculate_nearest_possible_frequency(OPTIMAL_TICKS_PER_SECOND_RATE));
|
|
|
|
// We don't need an interrupt for time keeping purposes because we
|
|
// can query the timer.
|
|
m_time_keeper_timer = m_system_timer;
|
|
|
|
if (periodic_timers.size() > taken_periodic_timers_count) {
|
|
m_profile_timer = periodic_timers[taken_periodic_timers_count];
|
|
taken_periodic_timers_count += 1;
|
|
} else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
|
|
m_profile_timer = non_periodic_timers[taken_non_periodic_timers_count];
|
|
taken_non_periodic_timers_count += 1;
|
|
}
|
|
|
|
if (m_profile_timer) {
|
|
m_profile_timer->set_callback(PerformanceManager::timer_tick);
|
|
m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_x86_legacy_hardware_timers()
|
|
{
|
|
if (ACPI::is_enabled()) {
|
|
if (ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
|
|
dbgln("ACPI: CMOS RTC Not Present");
|
|
return false;
|
|
} else {
|
|
dbgln("ACPI: CMOS RTC Present");
|
|
}
|
|
}
|
|
|
|
m_hardware_timers.append(PIT::initialize(TimeManagement::update_time));
|
|
m_hardware_timers.append(RealTimeClock::create(TimeManagement::system_timer_tick));
|
|
m_time_keeper_timer = m_hardware_timers[0];
|
|
m_system_timer = m_hardware_timers[1];
|
|
|
|
// The timer is only as accurate as the interrupts...
|
|
m_time_ticks_per_second = m_time_keeper_timer->ticks_per_second();
|
|
return true;
|
|
}
|
|
|
|
void TimeManagement::update_time(RegisterState const&)
|
|
{
|
|
TimeManagement::the().increment_time_since_boot();
|
|
}
|
|
|
|
void TimeManagement::increment_time_since_boot_hpet()
|
|
{
|
|
VERIFY(!m_time_keeper_timer.is_null());
|
|
VERIFY(m_time_keeper_timer->timer_type() == HardwareTimerType::HighPrecisionEventTimer);
|
|
|
|
// NOTE: m_seconds_since_boot and m_ticks_this_second are only ever
|
|
// updated here! So we can safely read that information, query the clock,
|
|
// and when we're all done we can update the information. This reduces
|
|
// contention when other processors attempt to read the clock.
|
|
auto seconds_since_boot = m_seconds_since_boot;
|
|
auto ticks_this_second = m_ticks_this_second;
|
|
auto delta_ns = HPET::the().update_time(seconds_since_boot, ticks_this_second, false);
|
|
|
|
// Now that we have a precise time, go update it as quickly as we can
|
|
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
|
|
m_seconds_since_boot = seconds_since_boot;
|
|
m_ticks_this_second = ticks_this_second;
|
|
// TODO: Apply m_remaining_epoch_time_adjustment
|
|
timespec time_adjustment = { (time_t)(delta_ns / 1000000000), (long)(delta_ns % 1000000000) };
|
|
m_epoch_time += Duration::from_timespec(time_adjustment);
|
|
|
|
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
|
|
|
|
update_time_page();
|
|
}
|
|
#elif ARCH(AARCH64)
|
|
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_aarch64_hardware_timers()
|
|
{
|
|
m_hardware_timers.append(RPi::Timer::initialize());
|
|
m_system_timer = m_hardware_timers[0];
|
|
m_time_ticks_per_second = m_system_timer->frequency();
|
|
|
|
m_system_timer->set_callback([this](RegisterState const& regs) {
|
|
auto seconds_since_boot = m_seconds_since_boot;
|
|
auto ticks_this_second = m_ticks_this_second;
|
|
auto delta_ns = static_cast<RPi::Timer*>(m_system_timer.ptr())->update_time(seconds_since_boot, ticks_this_second, false);
|
|
|
|
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
|
|
m_seconds_since_boot = seconds_since_boot;
|
|
m_ticks_this_second = ticks_this_second;
|
|
|
|
m_epoch_time += Duration::from_nanoseconds(delta_ns);
|
|
|
|
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
|
|
|
|
update_time_page();
|
|
|
|
system_timer_tick(regs);
|
|
});
|
|
|
|
m_time_keeper_timer = m_system_timer;
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
# error Unknown architecture
|
|
#endif
|
|
|
|
void TimeManagement::increment_time_since_boot()
|
|
{
|
|
VERIFY(!m_time_keeper_timer.is_null());
|
|
|
|
// Compute time adjustment for adjtime. Let the clock run up to 1% fast or slow.
|
|
// That way, adjtime can adjust up to 36 seconds per hour, without time getting very jumpy.
|
|
// Once we have a smarter NTP service that also adjusts the frequency instead of just slewing time, maybe we can lower this.
|
|
long nanos_per_tick = 1'000'000'000 / m_time_keeper_timer->frequency();
|
|
time_t max_slew_nanos = nanos_per_tick / 100;
|
|
|
|
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
|
|
|
|
auto slew_nanos = Duration::from_nanoseconds(
|
|
clamp(m_remaining_epoch_time_adjustment.to_nanoseconds(), -max_slew_nanos, max_slew_nanos));
|
|
m_remaining_epoch_time_adjustment -= slew_nanos;
|
|
|
|
m_epoch_time += Duration::from_nanoseconds(nanos_per_tick + slew_nanos.to_nanoseconds());
|
|
|
|
if (++m_ticks_this_second >= m_time_keeper_timer->ticks_per_second()) {
|
|
// FIXME: Synchronize with other clock somehow to prevent drifting apart.
|
|
++m_seconds_since_boot;
|
|
m_ticks_this_second = 0;
|
|
}
|
|
|
|
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
|
|
|
|
update_time_page();
|
|
}
|
|
|
|
void TimeManagement::system_timer_tick(RegisterState const& regs)
|
|
{
|
|
if (Processor::current_in_irq() <= 1) {
|
|
// Don't expire timers while handling IRQs
|
|
TimerQueue::the().fire();
|
|
}
|
|
Scheduler::timer_tick(regs);
|
|
}
|
|
|
|
bool TimeManagement::enable_profile_timer()
|
|
{
|
|
if (!m_profile_timer)
|
|
return false;
|
|
if (m_profile_enable_count.fetch_add(1) == 0)
|
|
return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(OPTIMAL_PROFILE_TICKS_PER_SECOND_RATE));
|
|
return true;
|
|
}
|
|
|
|
bool TimeManagement::disable_profile_timer()
|
|
{
|
|
if (!m_profile_timer)
|
|
return false;
|
|
if (m_profile_enable_count.fetch_sub(1) == 1)
|
|
return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
|
|
return true;
|
|
}
|
|
|
|
void TimeManagement::update_time_page()
|
|
{
|
|
auto& page = time_page();
|
|
u32 update_iteration = AK::atomic_fetch_add(&page.update2, 1u, AK::MemoryOrder::memory_order_acquire);
|
|
page.clocks[CLOCK_REALTIME_COARSE] = m_epoch_time.to_timespec();
|
|
page.clocks[CLOCK_MONOTONIC_COARSE] = monotonic_time(TimePrecision::Coarse).time_since_start({}).to_timespec();
|
|
AK::atomic_store(&page.update1, update_iteration + 1u, AK::MemoryOrder::memory_order_release);
|
|
}
|
|
|
|
TimePage& TimeManagement::time_page()
|
|
{
|
|
return *static_cast<TimePage*>((void*)m_time_page_region->vaddr().as_ptr());
|
|
}
|
|
|
|
Memory::VMObject& TimeManagement::time_page_vmobject()
|
|
{
|
|
return m_time_page_region->vmobject();
|
|
}
|
|
|
|
}
|