ladybird/Libraries/LibJS/Interpreter.h
Matthew Olsson c485c86015 LibJS: Use macros to enumerate well-known symbols
Not only is this a much nicer api (can't pass a typo'd string into the
get_well_known_symbol function), it is also a bit more performant since
there are no hashmap lookups.
2020-07-11 18:54:13 +02:00

244 lines
7.6 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/FlyString.h>
#include <AK/HashMap.h>
#include <AK/String.h>
#include <AK/Vector.h>
#include <AK/Weakable.h>
#include <LibJS/AST.h>
#include <LibJS/Console.h>
#include <LibJS/Forward.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Runtime/ErrorTypes.h>
#include <LibJS/Runtime/Exception.h>
#include <LibJS/Runtime/LexicalEnvironment.h>
#include <LibJS/Runtime/MarkedValueList.h>
#include <LibJS/Runtime/Value.h>
namespace JS {
enum class ScopeType {
None,
Function,
Block,
Try,
Breakable,
Continuable,
};
struct ScopeFrame {
ScopeType type;
NonnullRefPtr<ScopeNode> scope_node;
bool pushed_environment { false };
};
struct CallFrame {
FlyString function_name;
Value this_value;
Vector<Value> arguments;
LexicalEnvironment* environment { nullptr };
};
struct Argument {
FlyString name;
Value value;
};
typedef Vector<Argument, 8> ArgumentVector;
class Interpreter : public Weakable<Interpreter> {
public:
template<typename GlobalObjectType, typename... Args>
static NonnullOwnPtr<Interpreter> create(Args&&... args)
{
auto interpreter = adopt_own(*new Interpreter);
interpreter->m_global_object = interpreter->heap().allocate_without_global_object<GlobalObjectType>(forward<Args>(args)...);
static_cast<GlobalObjectType*>(interpreter->m_global_object)->initialize();
return interpreter;
}
~Interpreter();
Value run(GlobalObject&, const Statement&, ArgumentVector = {}, ScopeType = ScopeType::Block);
GlobalObject& global_object();
const GlobalObject& global_object() const;
Heap& heap() { return m_heap; }
void unwind(ScopeType type, FlyString label = {})
{
m_unwind_until = type;
m_unwind_until_label = label;
}
void stop_unwind() { m_unwind_until = ScopeType::None; }
bool should_unwind_until(ScopeType type, FlyString label) const
{
if (m_unwind_until_label.is_null())
return m_unwind_until == type;
return m_unwind_until == type && m_unwind_until_label == label;
}
bool should_unwind() const { return m_unwind_until != ScopeType::None; }
Value get_variable(const FlyString& name, GlobalObject&);
void set_variable(const FlyString& name, Value, GlobalObject&, bool first_assignment = false);
Reference get_reference(const FlyString& name);
Symbol* get_global_symbol(const String& description);
void gather_roots(Badge<Heap>, HashTable<Cell*>&);
void enter_scope(const ScopeNode&, ArgumentVector, ScopeType, GlobalObject&);
void exit_scope(const ScopeNode&);
Value call(Function&, Value this_value, Optional<MarkedValueList> arguments = {});
Value construct(Function&, Function& new_target, Optional<MarkedValueList> arguments, GlobalObject&);
CallFrame& push_call_frame()
{
m_call_stack.append({ {}, js_undefined(), {}, nullptr });
return m_call_stack.last();
}
void pop_call_frame() { m_call_stack.take_last(); }
const CallFrame& call_frame() { return m_call_stack.last(); }
const Vector<CallFrame>& call_stack() { return m_call_stack; }
void push_environment(LexicalEnvironment*);
void pop_environment();
const LexicalEnvironment* current_environment() const { return m_call_stack.last().environment; }
LexicalEnvironment* current_environment() { return m_call_stack.last().environment; }
bool in_strict_mode() const { return m_scope_stack.last().scope_node->in_strict_mode(); }
template<typename Callback>
void for_each_argument(Callback callback)
{
if (m_call_stack.is_empty())
return;
for (auto& value : m_call_stack.last().arguments)
callback(value);
}
size_t argument_count() const
{
if (m_call_stack.is_empty())
return 0;
return m_call_stack.last().arguments.size();
}
Value argument(size_t index) const
{
if (m_call_stack.is_empty())
return {};
auto& arguments = m_call_stack.last().arguments;
return index < arguments.size() ? arguments[index] : js_undefined();
}
Value this_value(Object& global_object) const
{
if (m_call_stack.is_empty())
return &global_object;
return m_call_stack.last().this_value;
}
Exception* exception()
{
return m_exception;
}
void clear_exception() { m_exception = nullptr; }
template<typename T, typename... Args>
Value throw_exception(Args&&... args)
{
return throw_exception(T::create(global_object(), forward<Args>(args)...));
}
Value throw_exception(Exception*);
Value throw_exception(Value value)
{
return throw_exception(heap().allocate<Exception>(global_object(), value));
}
template<typename T, typename... Args>
Value throw_exception(ErrorType type, Args&&... args)
{
return throw_exception(T::create(global_object(), String::format(type.message(), forward<Args>(args)...)));
}
Value last_value() const { return m_last_value; }
bool underscore_is_last_value() const { return m_underscore_is_last_value; }
void set_underscore_is_last_value(bool b) { m_underscore_is_last_value = b; }
Console& console() { return m_console; }
const Console& console() const { return m_console; }
String join_arguments() const;
Value resolve_this_binding() const;
const LexicalEnvironment* get_this_environment() const;
Value get_new_target() const;
#define __JS_ENUMERATE(SymbolName, snake_name) \
Symbol* well_known_symbol_##snake_name() const { return m_well_known_symbol_##snake_name; }
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
private:
Interpreter();
Heap m_heap;
Value m_last_value;
Vector<ScopeFrame> m_scope_stack;
Vector<CallFrame> m_call_stack;
Object* m_global_object { nullptr };
Exception* m_exception { nullptr };
ScopeType m_unwind_until { ScopeType::None };
FlyString m_unwind_until_label;
bool m_underscore_is_last_value { false };
Console m_console;
HashMap<String, Symbol*> m_global_symbol_map;
#define __JS_ENUMERATE(SymbolName, snake_name) \
Symbol* m_well_known_symbol_##snake_name { nullptr };
JS_ENUMERATE_WELL_KNOWN_SYMBOLS
#undef __JS_ENUMERATE
};
}