ladybird/Libraries/LibJS/AST.cpp
2020-07-28 19:10:10 +02:00

1944 lines
62 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/HashMap.h>
#include <AK/ScopeGuard.h>
#include <AK/StringBuilder.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Accessor.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/IteratorOperations.h>
#include <LibJS/Runtime/MarkedValueList.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/PrimitiveString.h>
#include <LibJS/Runtime/Reference.h>
#include <LibJS/Runtime/RegExpObject.h>
#include <LibJS/Runtime/ScriptFunction.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/StringObject.h>
#include <stdio.h>
namespace JS {
static void update_function_name(Value& value, const FlyString& name)
{
if (!value.is_object())
return;
auto& object = value.as_object();
if (object.is_function()) {
auto& function = static_cast<Function&>(object);
if (function.is_script_function() && function.name().is_empty())
static_cast<ScriptFunction&>(function).set_name(name);
} else if (object.is_array()) {
auto& array = static_cast<Array&>(object);
for (auto& entry : array.indexed_properties().values_unordered())
update_function_name(entry.value, name);
}
}
static String get_function_name(Interpreter& interpreter, Value value)
{
if (value.is_symbol())
return String::format("[%s]", value.as_symbol().description().characters());
if (value.is_string())
return value.as_string().string();
return value.to_string(interpreter);
}
Value ScopeNode::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return interpreter.run(global_object, *this);
}
Value FunctionDeclaration::execute(Interpreter&, GlobalObject&) const
{
return js_undefined();
}
Value FunctionExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return ScriptFunction::create(global_object, name(), body(), parameters(), function_length(), interpreter.current_environment(), m_is_arrow_function);
}
Value ExpressionStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return m_expression->execute(interpreter, global_object);
}
CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter, GlobalObject& global_object) const
{
if (is_new_expression()) {
// Computing |this| is irrelevant for "new" expression.
return { js_undefined(), m_callee->execute(interpreter, global_object) };
}
if (m_callee->is_super_expression()) {
// If we are calling super, |this| has not been initalized yet, and would not be meaningful to provide.
auto new_target = interpreter.get_new_target();
ASSERT(new_target.is_function());
return { js_undefined(), new_target };
}
if (m_callee->is_member_expression()) {
auto& member_expression = static_cast<const MemberExpression&>(*m_callee);
bool is_super_property_lookup = member_expression.object().is_super_expression();
auto lookup_target = is_super_property_lookup ? interpreter.current_environment()->get_super_base() : member_expression.object().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (is_super_property_lookup && (lookup_target.is_null() || lookup_target.is_undefined())) {
interpreter.throw_exception<TypeError>(ErrorType::ObjectPrototypeNullOrUndefinedOnSuperPropertyAccess, lookup_target.to_string_without_side_effects().characters());
return {};
}
auto* this_value = is_super_property_lookup ? &interpreter.this_value(global_object).as_object() : lookup_target.to_object(interpreter, global_object);
if (interpreter.exception())
return {};
auto callee = lookup_target.to_object(interpreter, global_object)->get(member_expression.computed_property_name(interpreter, global_object)).value_or(js_undefined());
return { this_value, callee };
}
return { &global_object, m_callee->execute(interpreter, global_object) };
}
Value CallExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto [this_value, callee] = compute_this_and_callee(interpreter, global_object);
if (interpreter.exception())
return {};
ASSERT(!callee.is_empty());
if (!callee.is_function()
|| (is_new_expression() && (callee.as_object().is_native_function() && !static_cast<NativeFunction&>(callee.as_object()).has_constructor()))) {
String error_message;
auto call_type = is_new_expression() ? "constructor" : "function";
if (m_callee->is_identifier() || m_callee->is_member_expression()) {
String expression_string;
if (m_callee->is_identifier()) {
expression_string = static_cast<const Identifier&>(*m_callee).string();
} else {
expression_string = static_cast<const MemberExpression&>(*m_callee).to_string_approximation();
}
return interpreter.throw_exception<TypeError>(ErrorType::IsNotAEvaluatedFrom, callee.to_string_without_side_effects().characters(), call_type, expression_string.characters());
} else {
return interpreter.throw_exception<TypeError>(ErrorType::IsNotA, callee.to_string_without_side_effects().characters(), call_type);
}
}
auto& function = callee.as_function();
MarkedValueList arguments(interpreter.heap());
for (size_t i = 0; i < m_arguments.size(); ++i) {
auto value = m_arguments[i].value->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (m_arguments[i].is_spread) {
get_iterator_values(global_object, value, [&](Value& iterator_value) {
if (interpreter.exception())
return IterationDecision::Break;
arguments.append(iterator_value);
return IterationDecision::Continue;
});
if (interpreter.exception())
return {};
} else {
arguments.append(value);
}
}
Object* new_object = nullptr;
Value result;
if (is_new_expression()) {
result = interpreter.construct(function, function, move(arguments), global_object);
if (result.is_object())
new_object = &result.as_object();
} else if (m_callee->is_super_expression()) {
auto* super_constructor = interpreter.current_environment()->current_function()->prototype();
// FIXME: Functions should track their constructor kind.
if (!super_constructor || !super_constructor->is_function())
return interpreter.throw_exception<TypeError>(ErrorType::NotAConstructor, "Super constructor");
result = interpreter.construct(static_cast<Function&>(*super_constructor), function, move(arguments), global_object);
if (interpreter.exception())
return {};
interpreter.current_environment()->bind_this_value(result);
} else {
result = interpreter.call(function, this_value, move(arguments));
}
if (interpreter.exception())
return {};
if (is_new_expression()) {
if (result.is_object())
return result;
return new_object;
}
return result;
}
Value ReturnStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto value = argument() ? argument()->execute(interpreter, global_object) : js_undefined();
if (interpreter.exception())
return {};
interpreter.unwind(ScopeType::Function);
return value;
}
Value IfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto predicate_result = m_predicate->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (predicate_result.to_boolean())
return interpreter.run(global_object, *m_consequent);
if (m_alternate)
return interpreter.run(global_object, *m_alternate);
return js_undefined();
}
Value WhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value last_value = js_undefined();
while (m_test->execute(interpreter, global_object).to_boolean()) {
if (interpreter.exception())
return {};
last_value = interpreter.run(global_object, *m_body);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DoWhileStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value last_value = js_undefined();
do {
if (interpreter.exception())
return {};
last_value = interpreter.run(global_object, *m_body);
if (interpreter.exception())
return {};
} while (m_test->execute(interpreter, global_object).to_boolean());
return last_value;
}
Value ForStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
RefPtr<BlockStatement> wrapper;
if (m_init && m_init->is_variable_declaration() && static_cast<const VariableDeclaration*>(m_init.ptr())->declaration_kind() != DeclarationKind::Var) {
wrapper = create_ast_node<BlockStatement>();
NonnullRefPtrVector<VariableDeclaration> decls;
decls.append(*static_cast<const VariableDeclaration*>(m_init.ptr()));
wrapper->add_variables(decls);
interpreter.enter_scope(*wrapper, {}, ScopeType::Block, global_object);
}
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
Value last_value = js_undefined();
if (m_init) {
m_init->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
if (m_test) {
while (true) {
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!test_result.to_boolean())
break;
last_value = interpreter.run(global_object, *m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
}
} else {
while (true) {
last_value = interpreter.run(global_object, *m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
if (m_update) {
m_update->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
}
}
return last_value;
}
static FlyString variable_from_for_declaration(Interpreter& interpreter, GlobalObject& global_object, NonnullRefPtr<ASTNode> node, RefPtr<BlockStatement> wrapper)
{
FlyString variable_name;
if (node->is_variable_declaration()) {
auto* variable_declaration = static_cast<const VariableDeclaration*>(node.ptr());
ASSERT(!variable_declaration->declarations().is_empty());
if (variable_declaration->declaration_kind() != DeclarationKind::Var) {
wrapper = create_ast_node<BlockStatement>();
interpreter.enter_scope(*wrapper, {}, ScopeType::Block, global_object);
}
variable_declaration->execute(interpreter, global_object);
variable_name = variable_declaration->declarations().first().id().string();
} else if (node->is_identifier()) {
variable_name = static_cast<const Identifier&>(*node).string();
} else {
ASSERT_NOT_REACHED();
}
return variable_name;
}
Value ForInStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
if (!m_lhs->is_variable_declaration() && !m_lhs->is_identifier()) {
// FIXME: Implement "for (foo.bar in baz)", "for (foo[0] in bar)"
ASSERT_NOT_REACHED();
}
RefPtr<BlockStatement> wrapper;
auto variable_name = variable_from_for_declaration(interpreter, global_object, m_lhs, wrapper);
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
auto last_value = js_undefined();
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto* object = rhs_result.to_object(interpreter, global_object);
while (object) {
auto property_names = object->get_own_properties(*object, Object::PropertyKind::Key, true);
for (auto& property_name : property_names.as_object().indexed_properties()) {
interpreter.set_variable(variable_name, property_name.value_and_attributes(object).value, global_object);
if (interpreter.exception())
return {};
last_value = interpreter.run(global_object, *m_body);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.stop_unwind();
break;
} else {
return js_undefined();
}
}
}
object = object->prototype();
if (interpreter.exception())
return {};
}
return last_value;
}
Value ForOfStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
if (!m_lhs->is_variable_declaration() && !m_lhs->is_identifier()) {
// FIXME: Implement "for (foo.bar of baz)", "for (foo[0] of bar)"
ASSERT_NOT_REACHED();
}
RefPtr<BlockStatement> wrapper;
auto variable_name = variable_from_for_declaration(interpreter, global_object, m_lhs, wrapper);
auto wrapper_cleanup = ScopeGuard([&] {
if (wrapper)
interpreter.exit_scope(*wrapper);
});
auto last_value = js_undefined();
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
get_iterator_values(global_object, rhs_result, [&](Value& value) {
interpreter.set_variable(variable_name, value, global_object);
last_value = interpreter.run(global_object, *m_body);
if (interpreter.exception())
return IterationDecision::Break;
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) {
interpreter.stop_unwind();
} else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.stop_unwind();
return IterationDecision::Break;
} else {
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
if (interpreter.exception())
return {};
if (interpreter.should_unwind())
return js_undefined();
return last_value;
}
Value BinaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
switch (m_op) {
case BinaryOp::Addition:
return add(interpreter, lhs_result, rhs_result);
case BinaryOp::Subtraction:
return sub(interpreter, lhs_result, rhs_result);
case BinaryOp::Multiplication:
return mul(interpreter, lhs_result, rhs_result);
case BinaryOp::Division:
return div(interpreter, lhs_result, rhs_result);
case BinaryOp::Modulo:
return mod(interpreter, lhs_result, rhs_result);
case BinaryOp::Exponentiation:
return exp(interpreter, lhs_result, rhs_result);
case BinaryOp::TypedEquals:
return Value(strict_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::TypedInequals:
return Value(!strict_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::AbstractEquals:
return Value(abstract_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::AbstractInequals:
return Value(!abstract_eq(interpreter, lhs_result, rhs_result));
case BinaryOp::GreaterThan:
return greater_than(interpreter, lhs_result, rhs_result);
case BinaryOp::GreaterThanEquals:
return greater_than_equals(interpreter, lhs_result, rhs_result);
case BinaryOp::LessThan:
return less_than(interpreter, lhs_result, rhs_result);
case BinaryOp::LessThanEquals:
return less_than_equals(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseAnd:
return bitwise_and(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseOr:
return bitwise_or(interpreter, lhs_result, rhs_result);
case BinaryOp::BitwiseXor:
return bitwise_xor(interpreter, lhs_result, rhs_result);
case BinaryOp::LeftShift:
return left_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::RightShift:
return right_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::UnsignedRightShift:
return unsigned_right_shift(interpreter, lhs_result, rhs_result);
case BinaryOp::In:
return in(interpreter, lhs_result, rhs_result);
case BinaryOp::InstanceOf:
return instance_of(interpreter, lhs_result, rhs_result);
}
ASSERT_NOT_REACHED();
}
Value LogicalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
switch (m_op) {
case LogicalOp::And:
if (lhs_result.to_boolean()) {
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
case LogicalOp::Or: {
if (lhs_result.to_boolean())
return lhs_result;
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
case LogicalOp::NullishCoalescing:
if (lhs_result.is_null() || lhs_result.is_undefined()) {
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return rhs_result;
}
return lhs_result;
}
ASSERT_NOT_REACHED();
}
Reference Expression::to_reference(Interpreter&, GlobalObject&) const
{
return {};
}
Reference Identifier::to_reference(Interpreter& interpreter, GlobalObject&) const
{
return interpreter.get_reference(string());
}
Reference MemberExpression::to_reference(Interpreter& interpreter, GlobalObject& global_object) const
{
auto object_value = m_object->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto property_name = computed_property_name(interpreter, global_object);
if (!property_name.is_valid())
return {};
return { object_value, property_name };
}
Value UnaryExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
if (m_op == UnaryOp::Delete) {
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
return Value(true);
// FIXME: Support deleting locals
ASSERT(!reference.is_local_variable());
if (reference.is_global_variable())
return global_object.delete_property(reference.name());
auto* base_object = reference.base().to_object(interpreter, global_object);
if (!base_object)
return {};
return base_object->delete_property(reference.name());
}
Value lhs_result;
if (m_op == UnaryOp::Typeof && m_lhs->is_identifier()) {
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception()) {
return {};
}
// FIXME: standard recommends checking with is_unresolvable but it ALWAYS return false here
if (reference.is_local_variable() || reference.is_global_variable()) {
auto name = reference.name();
lhs_result = interpreter.get_variable(name.to_string(), global_object).value_or(js_undefined());
if (interpreter.exception())
return {};
}
} else {
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
switch (m_op) {
case UnaryOp::BitwiseNot:
return bitwise_not(interpreter, lhs_result);
case UnaryOp::Not:
return Value(!lhs_result.to_boolean());
case UnaryOp::Plus:
return unary_plus(interpreter, lhs_result);
case UnaryOp::Minus:
return unary_minus(interpreter, lhs_result);
case UnaryOp::Typeof:
switch (lhs_result.type()) {
case Value::Type::Empty:
ASSERT_NOT_REACHED();
return {};
case Value::Type::Undefined:
return js_string(interpreter, "undefined");
case Value::Type::Null:
// yes, this is on purpose. yes, this is how javascript works.
// yes, it's silly.
return js_string(interpreter, "object");
case Value::Type::Number:
return js_string(interpreter, "number");
case Value::Type::String:
return js_string(interpreter, "string");
case Value::Type::Object:
if (lhs_result.is_function())
return js_string(interpreter, "function");
return js_string(interpreter, "object");
case Value::Type::Boolean:
return js_string(interpreter, "boolean");
case Value::Type::Symbol:
return js_string(interpreter, "symbol");
case Value::Type::BigInt:
return js_string(interpreter, "bigint");
default:
ASSERT_NOT_REACHED();
}
case UnaryOp::Void:
return js_undefined();
case UnaryOp::Delete:
ASSERT_NOT_REACHED();
}
ASSERT_NOT_REACHED();
}
Value SuperExpression::execute(Interpreter&, GlobalObject&) const
{
// The semantics for SuperExpressions are handled in CallExpression::compute_this_and_callee()
ASSERT_NOT_REACHED();
}
Value ClassMethod::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return m_function->execute(interpreter, global_object);
}
Value ClassExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value class_constructor_value = m_constructor->execute(interpreter, global_object);
if (interpreter.exception())
return {};
update_function_name(class_constructor_value, m_name);
ASSERT(class_constructor_value.is_function() && class_constructor_value.as_function().is_script_function());
ScriptFunction* class_constructor = static_cast<ScriptFunction*>(&class_constructor_value.as_function());
Value super_constructor = js_undefined();
if (!m_super_class.is_null()) {
super_constructor = m_super_class->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!super_constructor.is_function() && !super_constructor.is_null())
return interpreter.throw_exception<TypeError>(ErrorType::ClassDoesNotExtendAConstructorOrNull, super_constructor.to_string_without_side_effects().characters());
class_constructor->set_constructor_kind(Function::ConstructorKind::Derived);
Object* prototype = Object::create_empty(global_object);
Object* super_constructor_prototype = nullptr;
if (!super_constructor.is_null()) {
super_constructor_prototype = &super_constructor.as_object().get("prototype").as_object();
if (interpreter.exception())
return {};
}
prototype->set_prototype(super_constructor_prototype);
prototype->define_property("constructor", class_constructor, 0);
if (interpreter.exception())
return {};
class_constructor->define_property("prototype", prototype, 0);
if (interpreter.exception())
return {};
class_constructor->set_prototype(super_constructor.is_null() ? global_object.function_prototype() : &super_constructor.as_object());
}
auto class_prototype = class_constructor->get("prototype");
if (interpreter.exception())
return {};
if (!class_prototype.is_object())
return interpreter.throw_exception<TypeError>(ErrorType::NotAnObject, "Class prototype");
for (const auto& method : m_methods) {
auto method_value = method.execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto& method_function = method_value.as_function();
auto key = method.key().execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto& target = method.is_static() ? *class_constructor : class_prototype.as_object();
method_function.set_home_object(&target);
if (method.kind() == ClassMethod::Kind::Method) {
target.define_property(StringOrSymbol::from_value(interpreter, key), method_value);
} else {
String accessor_name = [&] {
switch (method.kind()) {
case ClassMethod::Kind::Getter:
return String::format("get %s", get_function_name(interpreter, key).characters());
case ClassMethod::Kind::Setter:
return String::format("set %s", get_function_name(interpreter, key).characters());
default:
ASSERT_NOT_REACHED();
}
}();
update_function_name(method_value, accessor_name);
target.define_accessor(StringOrSymbol::from_value(interpreter, key), method_function, method.kind() == ClassMethod::Kind::Getter, Attribute::Configurable | Attribute::Enumerable);
}
if (interpreter.exception())
return {};
}
return class_constructor;
}
Value ClassDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value class_constructor = m_class_expression->execute(interpreter, global_object);
if (interpreter.exception())
return {};
interpreter.current_environment()->set(m_class_expression->name(), { class_constructor, DeclarationKind::Let });
return js_undefined();
}
static void print_indent(int indent)
{
for (int i = 0; i < indent * 2; ++i)
putchar(' ');
}
void ASTNode::dump(int indent) const
{
print_indent(indent);
printf("%s\n", class_name());
}
void ScopeNode::dump(int indent) const
{
ASTNode::dump(indent);
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
if (!m_children.is_empty()) {
print_indent(indent + 1);
printf("(Children)\n");
for (auto& child : children())
child.dump(indent + 2);
}
}
void BinaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case BinaryOp::Addition:
op_string = "+";
break;
case BinaryOp::Subtraction:
op_string = "-";
break;
case BinaryOp::Multiplication:
op_string = "*";
break;
case BinaryOp::Division:
op_string = "/";
break;
case BinaryOp::Modulo:
op_string = "%";
break;
case BinaryOp::Exponentiation:
op_string = "**";
break;
case BinaryOp::TypedEquals:
op_string = "===";
break;
case BinaryOp::TypedInequals:
op_string = "!==";
break;
case BinaryOp::AbstractEquals:
op_string = "==";
break;
case BinaryOp::AbstractInequals:
op_string = "!=";
break;
case BinaryOp::GreaterThan:
op_string = ">";
break;
case BinaryOp::GreaterThanEquals:
op_string = ">=";
break;
case BinaryOp::LessThan:
op_string = "<";
break;
case BinaryOp::LessThanEquals:
op_string = "<=";
break;
case BinaryOp::BitwiseAnd:
op_string = "&";
break;
case BinaryOp::BitwiseOr:
op_string = "|";
break;
case BinaryOp::BitwiseXor:
op_string = "^";
break;
case BinaryOp::LeftShift:
op_string = "<<";
break;
case BinaryOp::RightShift:
op_string = ">>";
break;
case BinaryOp::UnsignedRightShift:
op_string = ">>>";
break;
case BinaryOp::In:
op_string = "in";
break;
case BinaryOp::InstanceOf:
op_string = "instanceof";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void LogicalExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case LogicalOp::And:
op_string = "&&";
break;
case LogicalOp::Or:
op_string = "||";
break;
case LogicalOp::NullishCoalescing:
op_string = "??";
break;
}
print_indent(indent);
printf("%s\n", class_name());
m_lhs->dump(indent + 1);
print_indent(indent + 1);
printf("%s\n", op_string);
m_rhs->dump(indent + 1);
}
void UnaryExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UnaryOp::BitwiseNot:
op_string = "~";
break;
case UnaryOp::Not:
op_string = "!";
break;
case UnaryOp::Plus:
op_string = "+";
break;
case UnaryOp::Minus:
op_string = "-";
break;
case UnaryOp::Typeof:
op_string = "typeof ";
break;
case UnaryOp::Void:
op_string = "void ";
break;
case UnaryOp::Delete:
op_string = "delete ";
break;
}
print_indent(indent);
printf("%s\n", class_name());
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
}
void CallExpression::dump(int indent) const
{
print_indent(indent);
printf("CallExpression %s\n", is_new_expression() ? "[new]" : "");
m_callee->dump(indent + 1);
for (auto& argument : m_arguments)
argument.value->dump(indent + 1);
}
void ClassDeclaration::dump(int indent) const
{
ASTNode::dump(indent);
m_class_expression->dump(indent + 1);
}
void ClassExpression::dump(int indent) const
{
print_indent(indent);
ASSERT(m_name.characters());
printf("ClassExpression: \"%s\"\n", m_name.characters());
print_indent(indent);
printf("(Constructor)\n");
m_constructor->dump(indent + 1);
if (!m_super_class.is_null()) {
print_indent(indent);
printf("(Super Class)\n");
m_super_class->dump(indent + 1);
}
print_indent(indent);
printf("(Methods)\n");
for (auto& method : m_methods)
method.dump(indent + 1);
}
void ClassMethod::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Key)\n");
m_key->dump(indent + 1);
const char* kind_string = nullptr;
switch (m_kind) {
case Kind::Method:
kind_string = "Method";
break;
case Kind::Getter:
kind_string = "Getter";
break;
case Kind::Setter:
kind_string = "Setter";
break;
}
print_indent(indent);
printf("Kind: %s\n", kind_string);
print_indent(indent);
printf("Static: %s\n", m_is_static ? "true" : "false");
print_indent(indent);
printf("(Function)\n");
m_function->dump(indent + 1);
}
void StringLiteral::dump(int indent) const
{
print_indent(indent);
printf("StringLiteral \"%s\"\n", m_value.characters());
}
void SuperExpression::dump(int indent) const
{
print_indent(indent);
printf("super\n");
}
void NumericLiteral::dump(int indent) const
{
print_indent(indent);
printf("NumericLiteral %g\n", m_value);
}
void BigIntLiteral::dump(int indent) const
{
print_indent(indent);
printf("BigIntLiteral %s\n", m_value.characters());
}
void BooleanLiteral::dump(int indent) const
{
print_indent(indent);
printf("BooleanLiteral %s\n", m_value ? "true" : "false");
}
void NullLiteral::dump(int indent) const
{
print_indent(indent);
printf("null\n");
}
void FunctionNode::dump(int indent, const char* class_name) const
{
print_indent(indent);
printf("%s '%s'\n", class_name, name().characters());
if (!m_parameters.is_empty()) {
print_indent(indent + 1);
printf("(Parameters)\n");
for (auto& parameter : m_parameters) {
print_indent(indent + 2);
if (parameter.is_rest)
printf("...");
printf("%s\n", parameter.name.characters());
if (parameter.default_value)
parameter.default_value->dump(indent + 3);
}
}
if (!m_variables.is_empty()) {
print_indent(indent + 1);
printf("(Variables)\n");
for (auto& variable : m_variables)
variable.dump(indent + 2);
}
print_indent(indent + 1);
printf("(Body)\n");
body().dump(indent + 2);
}
void FunctionDeclaration::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void FunctionExpression::dump(int indent) const
{
FunctionNode::dump(indent, class_name());
}
void ReturnStatement::dump(int indent) const
{
ASTNode::dump(indent);
if (argument())
argument()->dump(indent + 1);
}
void IfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("If\n");
predicate().dump(indent + 1);
consequent().dump(indent + 1);
if (alternate()) {
print_indent(indent);
printf("Else\n");
alternate()->dump(indent + 1);
}
}
void WhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("While\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void DoWhileStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("DoWhile\n");
test().dump(indent + 1);
body().dump(indent + 1);
}
void ForStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("For\n");
if (init())
init()->dump(indent + 1);
if (test())
test()->dump(indent + 1);
if (update())
update()->dump(indent + 1);
body().dump(indent + 1);
}
void ForInStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("ForIn\n");
lhs().dump(indent + 1);
rhs().dump(indent + 1);
body().dump(indent + 1);
}
void ForOfStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("ForOf\n");
lhs().dump(indent + 1);
rhs().dump(indent + 1);
body().dump(indent + 1);
}
Value Identifier::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto value = interpreter.get_variable(string(), global_object);
if (value.is_empty())
return interpreter.throw_exception<ReferenceError>(ErrorType::UnknownIdentifier, string().characters());
return value;
}
void Identifier::dump(int indent) const
{
print_indent(indent);
printf("Identifier \"%s\"\n", m_string.characters());
}
void SpreadExpression::dump(int indent) const
{
ASTNode::dump(indent);
m_target->dump(indent + 1);
}
Value SpreadExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
return m_target->execute(interpreter, global_object);
}
Value ThisExpression::execute(Interpreter& interpreter, GlobalObject&) const
{
return interpreter.resolve_this_binding();
}
void ThisExpression::dump(int indent) const
{
ASTNode::dump(indent);
}
Value AssignmentExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto rhs_result = m_rhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
Value lhs_result;
switch (m_op) {
case AssignmentOp::Assignment:
break;
case AssignmentOp::AdditionAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = add(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::SubtractionAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = sub(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::MultiplicationAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = mul(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::DivisionAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = div(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::ModuloAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = mod(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::ExponentiationAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = exp(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseAndAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = bitwise_and(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseOrAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = bitwise_or(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::BitwiseXorAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = bitwise_xor(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::LeftShiftAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = left_shift(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::RightShiftAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = right_shift(interpreter, lhs_result, rhs_result);
break;
case AssignmentOp::UnsignedRightShiftAssignment:
lhs_result = m_lhs->execute(interpreter, global_object);
if (interpreter.exception())
return {};
rhs_result = unsigned_right_shift(interpreter, lhs_result, rhs_result);
break;
}
if (interpreter.exception())
return {};
auto reference = m_lhs->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
if (reference.is_unresolvable())
return interpreter.throw_exception<ReferenceError>(ErrorType::InvalidLeftHandAssignment);
update_function_name(rhs_result, get_function_name(interpreter, reference.name().to_value(interpreter)));
reference.put(interpreter, global_object, rhs_result);
if (interpreter.exception())
return {};
return rhs_result;
}
Value UpdateExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto reference = m_argument->to_reference(interpreter, global_object);
if (interpreter.exception())
return {};
auto old_value = reference.get(interpreter, global_object);
if (interpreter.exception())
return {};
old_value = old_value.to_numeric(interpreter);
if (interpreter.exception())
return {};
Value new_value;
switch (m_op) {
case UpdateOp::Increment:
if (old_value.is_number())
new_value = Value(old_value.as_double() + 1);
else
new_value = js_bigint(interpreter, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
break;
case UpdateOp::Decrement:
if (old_value.is_number())
new_value = Value(old_value.as_double() - 1);
else
new_value = js_bigint(interpreter, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
break;
default:
ASSERT_NOT_REACHED();
}
reference.put(interpreter, global_object, new_value);
if (interpreter.exception())
return {};
return m_prefixed ? new_value : old_value;
}
void AssignmentExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case AssignmentOp::Assignment:
op_string = "=";
break;
case AssignmentOp::AdditionAssignment:
op_string = "+=";
break;
case AssignmentOp::SubtractionAssignment:
op_string = "-=";
break;
case AssignmentOp::MultiplicationAssignment:
op_string = "*=";
break;
case AssignmentOp::DivisionAssignment:
op_string = "/=";
break;
case AssignmentOp::ModuloAssignment:
op_string = "%=";
break;
case AssignmentOp::ExponentiationAssignment:
op_string = "**=";
break;
case AssignmentOp::BitwiseAndAssignment:
op_string = "&=";
break;
case AssignmentOp::BitwiseOrAssignment:
op_string = "|=";
break;
case AssignmentOp::BitwiseXorAssignment:
op_string = "^=";
break;
case AssignmentOp::LeftShiftAssignment:
op_string = "<<=";
break;
case AssignmentOp::RightShiftAssignment:
op_string = ">>=";
break;
case AssignmentOp::UnsignedRightShiftAssignment:
op_string = ">>>=";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", op_string);
m_lhs->dump(indent + 1);
m_rhs->dump(indent + 1);
}
void UpdateExpression::dump(int indent) const
{
const char* op_string = nullptr;
switch (m_op) {
case UpdateOp::Increment:
op_string = "++";
break;
case UpdateOp::Decrement:
op_string = "--";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_prefixed)
printf("%s\n", op_string);
m_argument->dump(indent + 1);
if (!m_prefixed) {
print_indent(indent + 1);
printf("%s\n", op_string);
}
}
Value VariableDeclaration::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
for (auto& declarator : m_declarations) {
if (auto* init = declarator.init()) {
auto initalizer_result = init->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto variable_name = declarator.id().string();
update_function_name(initalizer_result, variable_name);
interpreter.set_variable(variable_name, initalizer_result, global_object, true);
}
}
return js_undefined();
}
Value VariableDeclarator::execute(Interpreter&, GlobalObject&) const
{
// NOTE: This node is handled by VariableDeclaration.
ASSERT_NOT_REACHED();
}
void VariableDeclaration::dump(int indent) const
{
const char* declaration_kind_string = nullptr;
switch (m_declaration_kind) {
case DeclarationKind::Let:
declaration_kind_string = "Let";
break;
case DeclarationKind::Var:
declaration_kind_string = "Var";
break;
case DeclarationKind::Const:
declaration_kind_string = "Const";
break;
}
ASTNode::dump(indent);
print_indent(indent + 1);
printf("%s\n", declaration_kind_string);
for (auto& declarator : m_declarations)
declarator.dump(indent + 1);
}
void VariableDeclarator::dump(int indent) const
{
ASTNode::dump(indent);
m_id->dump(indent + 1);
if (m_init)
m_init->dump(indent + 1);
}
void ObjectProperty::dump(int indent) const
{
ASTNode::dump(indent);
m_key->dump(indent + 1);
m_value->dump(indent + 1);
}
void ObjectExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& property : m_properties) {
property.dump(indent + 1);
}
}
void ExpressionStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_expression->dump(indent + 1);
}
Value ObjectProperty::execute(Interpreter&, GlobalObject&) const
{
// NOTE: ObjectProperty execution is handled by ObjectExpression.
ASSERT_NOT_REACHED();
}
Value ObjectExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto* object = Object::create_empty(global_object);
for (auto& property : m_properties) {
auto key = property.key().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (property.type() == ObjectProperty::Type::Spread) {
if (key.is_array()) {
auto& array_to_spread = static_cast<Array&>(key.as_object());
for (auto& entry : array_to_spread.indexed_properties()) {
object->indexed_properties().append(entry.value_and_attributes(&array_to_spread).value);
if (interpreter.exception())
return {};
}
} else if (key.is_object()) {
auto& obj_to_spread = key.as_object();
for (auto& it : obj_to_spread.shape().property_table_ordered()) {
if (it.value.attributes.is_enumerable()) {
object->define_property(it.key, obj_to_spread.get(it.key));
if (interpreter.exception())
return {};
}
}
} else if (key.is_string()) {
auto& str_to_spread = key.as_string().string();
for (size_t i = 0; i < str_to_spread.length(); i++) {
object->define_property(i, js_string(interpreter, str_to_spread.substring(i, 1)));
if (interpreter.exception())
return {};
}
}
continue;
}
if (interpreter.exception())
return {};
auto value = property.value().execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (value.is_function() && property.is_method())
value.as_function().set_home_object(object);
String name = get_function_name(interpreter, key);
if (property.type() == ObjectProperty::Type::Getter) {
name = String::format("get %s", name.characters());
} else if (property.type() == ObjectProperty::Type::Setter) {
name = String::format("set %s", name.characters());
}
update_function_name(value, name);
if (property.type() == ObjectProperty::Type::Getter || property.type() == ObjectProperty::Type::Setter) {
ASSERT(value.is_function());
object->define_accessor(PropertyName::from_value(interpreter, key), value.as_function(), property.type() == ObjectProperty::Type::Getter, Attribute::Configurable | Attribute::Enumerable);
if (interpreter.exception())
return {};
} else {
object->define_property(PropertyName::from_value(interpreter, key), value);
if (interpreter.exception())
return {};
}
}
return object;
}
void MemberExpression::dump(int indent) const
{
print_indent(indent);
printf("%s (computed=%s)\n", class_name(), is_computed() ? "true" : "false");
m_object->dump(indent + 1);
m_property->dump(indent + 1);
}
PropertyName MemberExpression::computed_property_name(Interpreter& interpreter, GlobalObject& global_object) const
{
if (!is_computed()) {
ASSERT(m_property->is_identifier());
return static_cast<const Identifier&>(*m_property).string();
}
auto index = m_property->execute(interpreter, global_object);
if (interpreter.exception())
return {};
ASSERT(!index.is_empty());
if (index.is_integer() && index.as_i32() >= 0)
return index.as_i32();
if (index.is_symbol())
return &index.as_symbol();
auto index_string = index.to_string(interpreter);
if (interpreter.exception())
return {};
return index_string;
}
String MemberExpression::to_string_approximation() const
{
String object_string = "<object>";
if (m_object->is_identifier())
object_string = static_cast<const Identifier&>(*m_object).string();
if (is_computed())
return String::format("%s[<computed>]", object_string.characters());
ASSERT(m_property->is_identifier());
return String::format("%s.%s", object_string.characters(), static_cast<const Identifier&>(*m_property).string().characters());
}
Value MemberExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto object_value = m_object->execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto* object_result = object_value.to_object(interpreter, global_object);
if (interpreter.exception())
return {};
return object_result->get(computed_property_name(interpreter, global_object)).value_or(js_undefined());
}
Value StringLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
return js_string(interpreter, m_value);
}
Value NumericLiteral::execute(Interpreter&, GlobalObject&) const
{
return Value(m_value);
}
Value BigIntLiteral::execute(Interpreter& interpreter, GlobalObject&) const
{
return js_bigint(interpreter, Crypto::SignedBigInteger::from_base10(m_value.substring(0, m_value.length() - 1)));
}
Value BooleanLiteral::execute(Interpreter&, GlobalObject&) const
{
return Value(m_value);
}
Value NullLiteral::execute(Interpreter&, GlobalObject&) const
{
return js_null();
}
void RegExpLiteral::dump(int indent) const
{
print_indent(indent);
printf("%s (/%s/%s)\n", class_name(), content().characters(), flags().characters());
}
Value RegExpLiteral::execute(Interpreter&, GlobalObject& global_object) const
{
return RegExpObject::create(global_object, content(), flags());
}
void ArrayExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& element : m_elements) {
if (element) {
element->dump(indent + 1);
} else {
print_indent(indent + 1);
printf("<empty>\n");
}
}
}
Value ArrayExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto* array = Array::create(global_object);
for (auto& element : m_elements) {
auto value = Value();
if (element) {
value = element->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (element->is_spread_expression()) {
get_iterator_values(global_object, value, [&](Value& iterator_value) {
array->indexed_properties().append(iterator_value);
return IterationDecision::Continue;
});
if (interpreter.exception())
return {};
continue;
}
}
array->indexed_properties().append(value);
}
return array;
}
void TemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value TemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
StringBuilder string_builder;
for (auto& expression : m_expressions) {
auto expr = expression.execute(interpreter, global_object);
if (interpreter.exception())
return {};
auto string = expr.to_string(interpreter);
if (interpreter.exception())
return {};
string_builder.append(string);
}
return js_string(interpreter, string_builder.build());
}
void TaggedTemplateLiteral::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
printf("(Tag)\n");
m_tag->dump(indent + 2);
print_indent(indent + 1);
printf("(Template Literal)\n");
m_template_literal->dump(indent + 2);
}
Value TaggedTemplateLiteral::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto tag = m_tag->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!tag.is_function()) {
interpreter.throw_exception<TypeError>(ErrorType::NotAFunction, tag.to_string_without_side_effects().characters());
return {};
}
auto& tag_function = tag.as_function();
auto& expressions = m_template_literal->expressions();
auto* strings = Array::create(global_object);
MarkedValueList arguments(interpreter.heap());
arguments.append(strings);
for (size_t i = 0; i < expressions.size(); ++i) {
auto value = expressions[i].execute(interpreter, global_object);
if (interpreter.exception())
return {};
// tag`${foo}` -> "", foo, "" -> tag(["", ""], foo)
// tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux)
if (i % 2 == 0) {
strings->indexed_properties().append(value);
} else {
arguments.append(value);
}
}
auto* raw_strings = Array::create(global_object);
for (auto& raw_string : m_template_literal->raw_strings()) {
auto value = raw_string.execute(interpreter, global_object);
if (interpreter.exception())
return {};
raw_strings->indexed_properties().append(value);
}
strings->define_property("raw", raw_strings, 0);
return interpreter.call(tag_function, js_undefined(), move(arguments));
}
void TryStatement::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent);
printf("(Block)\n");
block().dump(indent + 1);
if (handler()) {
print_indent(indent);
printf("(Handler)\n");
handler()->dump(indent + 1);
}
if (finalizer()) {
print_indent(indent);
printf("(Finalizer)\n");
finalizer()->dump(indent + 1);
}
}
void CatchClause::dump(int indent) const
{
print_indent(indent);
printf("CatchClause");
if (!m_parameter.is_null())
printf(" (%s)", m_parameter.characters());
printf("\n");
body().dump(indent + 1);
}
void ThrowStatement::dump(int indent) const
{
ASTNode::dump(indent);
argument().dump(indent + 1);
}
Value TryStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
interpreter.run(global_object, block(), {}, ScopeType::Try);
if (auto* exception = interpreter.exception()) {
if (m_handler) {
interpreter.clear_exception();
ArgumentVector arguments { { m_handler->parameter(), exception->value() } };
interpreter.run(global_object, m_handler->body(), move(arguments));
}
}
if (m_finalizer)
m_finalizer->execute(interpreter, global_object);
return js_undefined();
}
Value CatchClause::execute(Interpreter&, GlobalObject&) const
{
// NOTE: CatchClause execution is handled by TryStatement.
ASSERT_NOT_REACHED();
return {};
}
Value ThrowStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto value = m_argument->execute(interpreter, global_object);
if (interpreter.exception())
return {};
return interpreter.throw_exception(value);
}
Value SwitchStatement::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto discriminant_result = m_discriminant->execute(interpreter, global_object);
if (interpreter.exception())
return {};
bool falling_through = false;
for (auto& switch_case : m_cases) {
if (!falling_through && switch_case.test()) {
auto test_result = switch_case.test()->execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (!strict_eq(interpreter, discriminant_result, test_result))
continue;
}
falling_through = true;
for (auto& statement : switch_case.consequent()) {
statement.execute(interpreter, global_object);
if (interpreter.exception())
return {};
if (interpreter.should_unwind()) {
if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) {
interpreter.stop_unwind();
return {};
}
return {};
}
}
}
return js_undefined();
}
Value SwitchCase::execute(Interpreter&, GlobalObject&) const
{
return {};
}
Value BreakStatement::execute(Interpreter& interpreter, GlobalObject&) const
{
interpreter.unwind(ScopeType::Breakable, m_target_label);
return js_undefined();
}
Value ContinueStatement::execute(Interpreter& interpreter, GlobalObject&) const
{
interpreter.unwind(ScopeType::Continuable, m_target_label);
return js_undefined();
}
void SwitchStatement::dump(int indent) const
{
ASTNode::dump(indent);
m_discriminant->dump(indent + 1);
for (auto& switch_case : m_cases) {
switch_case.dump(indent + 1);
}
}
void SwitchCase::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
if (m_test) {
printf("(Test)\n");
m_test->dump(indent + 2);
} else {
printf("(Default)\n");
}
print_indent(indent + 1);
printf("(Consequent)\n");
for (auto& statement : m_consequent)
statement.dump(indent + 2);
}
Value ConditionalExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
auto test_result = m_test->execute(interpreter, global_object);
if (interpreter.exception())
return {};
Value result;
if (test_result.to_boolean()) {
result = m_consequent->execute(interpreter, global_object);
} else {
result = m_alternate->execute(interpreter, global_object);
}
if (interpreter.exception())
return {};
return result;
}
void ConditionalExpression::dump(int indent) const
{
ASTNode::dump(indent);
print_indent(indent + 1);
printf("(Test)\n");
m_test->dump(indent + 2);
print_indent(indent + 1);
printf("(Consequent)\n");
m_consequent->dump(indent + 2);
print_indent(indent + 1);
printf("(Alternate)\n");
m_alternate->dump(indent + 2);
}
void SequenceExpression::dump(int indent) const
{
ASTNode::dump(indent);
for (auto& expression : m_expressions)
expression.dump(indent + 1);
}
Value SequenceExpression::execute(Interpreter& interpreter, GlobalObject& global_object) const
{
Value last_value;
for (auto& expression : m_expressions) {
last_value = expression.execute(interpreter, global_object);
if (interpreter.exception())
return {};
}
return last_value;
}
Value DebuggerStatement::execute(Interpreter&, GlobalObject&) const
{
// Sorry, no JavaScript debugger available (yet)!
return js_undefined();
}
void ScopeNode::add_variables(NonnullRefPtrVector<VariableDeclaration> variables)
{
m_variables.append(move(variables));
}
void ScopeNode::add_functions(NonnullRefPtrVector<FunctionDeclaration> functions)
{
m_functions.append(move(functions));
}
}