ladybird/Libraries/LibGfx/PNGLoader.cpp
Andreas Kling 2f3b901f7f AK: Make MappedFile heap-allocated and ref-counted
Let's adapt this class a bit better to how it's actually being used.

Instead of having valid/invalid states and storing an error in case
it's invalid, a MappedFile is now always valid, and the factory
function that creates it will return an OSError if mapping fails.
2021-01-10 16:49:13 +01:00

1078 lines
34 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Endian.h>
#include <AK/LexicalPath.h>
#include <AK/MappedFile.h>
#include <LibCore/puff.h>
#include <LibGfx/PNGLoader.h>
#include <fcntl.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#ifdef __serenity__
# include <serenity.h>
#endif
//#define PNG_DEBUG
namespace Gfx {
static const u8 png_header[8] = { 0x89, 'P', 'N', 'G', 13, 10, 26, 10 };
struct PNG_IHDR {
NetworkOrdered<u32> width;
NetworkOrdered<u32> height;
u8 bit_depth { 0 };
u8 color_type { 0 };
u8 compression_method { 0 };
u8 filter_method { 0 };
u8 interlace_method { 0 };
};
static_assert(sizeof(PNG_IHDR) == 13);
struct Scanline {
u8 filter { 0 };
ReadonlyBytes data {};
};
struct [[gnu::packed]] PaletteEntry {
u8 r;
u8 g;
u8 b;
//u8 a;
};
template<typename T>
struct [[gnu::packed]] Tuple {
T gray;
T a;
};
template<typename T>
struct [[gnu::packed]] Triplet {
T r;
T g;
T b;
};
template<typename T>
struct [[gnu::packed]] Quad {
T r;
T g;
T b;
T a;
};
enum PngInterlaceMethod {
Null = 0,
Adam7 = 1
};
struct PNGLoadingContext {
enum State {
NotDecoded = 0,
Error,
HeaderDecoded,
SizeDecoded,
ChunksDecoded,
BitmapDecoded,
};
State state { State::NotDecoded };
const u8* data { nullptr };
size_t data_size { 0 };
int width { -1 };
int height { -1 };
u8 bit_depth { 0 };
u8 color_type { 0 };
u8 compression_method { 0 };
u8 filter_method { 0 };
u8 interlace_method { 0 };
u8 channels { 0 };
bool has_seen_zlib_header { false };
bool has_alpha() const { return color_type & 4 || palette_transparency_data.size() > 0; }
Vector<Scanline> scanlines;
RefPtr<Gfx::Bitmap> bitmap;
u8* decompression_buffer { nullptr };
size_t decompression_buffer_size { 0 };
Vector<u8> compressed_data;
Vector<PaletteEntry> palette_data;
Vector<u8> palette_transparency_data;
Checked<int> compute_row_size_for_width(int width)
{
Checked<int> row_size = width;
row_size *= channels;
row_size *= bit_depth;
row_size += 7;
row_size /= 8;
if (row_size.has_overflow()) {
dbgln("PNG too large, integer overflow while computing row size");
state = State::Error;
}
return row_size;
}
};
class Streamer {
public:
Streamer(const u8* data, size_t size)
: m_data_ptr(data)
, m_size_remaining(size)
{
}
template<typename T>
bool read(T& value)
{
if (m_size_remaining < sizeof(T))
return false;
value = *((const NetworkOrdered<T>*)m_data_ptr);
m_data_ptr += sizeof(T);
m_size_remaining -= sizeof(T);
return true;
}
bool read_bytes(u8* buffer, size_t count)
{
if (m_size_remaining < count)
return false;
memcpy(buffer, m_data_ptr, count);
m_data_ptr += count;
m_size_remaining -= count;
return true;
}
bool wrap_bytes(ReadonlyBytes& buffer, size_t count)
{
if (m_size_remaining < count)
return false;
buffer = ReadonlyBytes { m_data_ptr, count };
m_data_ptr += count;
m_size_remaining -= count;
return true;
}
bool at_end() const { return !m_size_remaining; }
private:
const u8* m_data_ptr { nullptr };
size_t m_size_remaining { 0 };
};
static RefPtr<Gfx::Bitmap> load_png_impl(const u8*, size_t);
static bool process_chunk(Streamer&, PNGLoadingContext& context);
RefPtr<Gfx::Bitmap> load_png(const StringView& path)
{
auto file_or_error = MappedFile::map(path);
if (file_or_error.is_error())
return nullptr;
auto bitmap = load_png_impl((const u8*)file_or_error.value()->data(), file_or_error.value()->size());
if (bitmap)
bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded PNG: {}", bitmap->size(), LexicalPath::canonicalized_path(path)));
return bitmap;
}
RefPtr<Gfx::Bitmap> load_png_from_memory(const u8* data, size_t length)
{
auto bitmap = load_png_impl(data, length);
if (bitmap)
bitmap->set_mmap_name(String::formatted("Gfx::Bitmap [{}] - Decoded PNG: <memory>", bitmap->size()));
return bitmap;
}
ALWAYS_INLINE static u8 paeth_predictor(int a, int b, int c)
{
int p = a + b - c;
int pa = abs(p - a);
int pb = abs(p - b);
int pc = abs(p - c);
if (pa <= pb && pa <= pc)
return a;
if (pb <= pc)
return b;
return c;
}
union [[gnu::packed]] Pixel {
RGBA32 rgba { 0 };
u8 v[4];
struct {
u8 r;
u8 g;
u8 b;
u8 a;
};
};
static_assert(sizeof(Pixel) == 4);
template<bool has_alpha, u8 filter_type>
ALWAYS_INLINE static void unfilter_impl(Gfx::Bitmap& bitmap, int y, const void* dummy_scanline_data)
{
auto* dummy_scanline = (const Pixel*)dummy_scanline_data;
if constexpr (filter_type == 0) {
auto* pixels = (Pixel*)bitmap.scanline(y);
for (int i = 0; i < bitmap.width(); ++i) {
auto& x = pixels[i];
swap(x.r, x.b);
}
}
if constexpr (filter_type == 1) {
auto* pixels = (Pixel*)bitmap.scanline(y);
swap(pixels[0].r, pixels[0].b);
for (int i = 1; i < bitmap.width(); ++i) {
auto& x = pixels[i];
swap(x.r, x.b);
auto& a = (const Pixel&)pixels[i - 1];
x.v[0] += a.v[0];
x.v[1] += a.v[1];
x.v[2] += a.v[2];
if constexpr (has_alpha)
x.v[3] += a.v[3];
}
return;
}
if constexpr (filter_type == 2) {
auto* pixels = (Pixel*)bitmap.scanline(y);
auto* pixels_y_minus_1 = y == 0 ? dummy_scanline : (const Pixel*)bitmap.scanline(y - 1);
for (int i = 0; i < bitmap.width(); ++i) {
auto& x = pixels[i];
swap(x.r, x.b);
const Pixel& b = pixels_y_minus_1[i];
x.v[0] += b.v[0];
x.v[1] += b.v[1];
x.v[2] += b.v[2];
if constexpr (has_alpha)
x.v[3] += b.v[3];
}
return;
}
if constexpr (filter_type == 3) {
auto* pixels = (Pixel*)bitmap.scanline(y);
auto* pixels_y_minus_1 = y == 0 ? dummy_scanline : (const Pixel*)bitmap.scanline(y - 1);
for (int i = 0; i < bitmap.width(); ++i) {
auto& x = pixels[i];
swap(x.r, x.b);
Pixel a;
if (i != 0)
a = pixels[i - 1];
const Pixel& b = pixels_y_minus_1[i];
x.v[0] = x.v[0] + ((a.v[0] + b.v[0]) / 2);
x.v[1] = x.v[1] + ((a.v[1] + b.v[1]) / 2);
x.v[2] = x.v[2] + ((a.v[2] + b.v[2]) / 2);
if constexpr (has_alpha)
x.v[3] = x.v[3] + ((a.v[3] + b.v[3]) / 2);
}
return;
}
if constexpr (filter_type == 4) {
auto* pixels = (Pixel*)bitmap.scanline(y);
auto* pixels_y_minus_1 = y == 0 ? dummy_scanline : (Pixel*)bitmap.scanline(y - 1);
for (int i = 0; i < bitmap.width(); ++i) {
auto& x = pixels[i];
swap(x.r, x.b);
Pixel a;
const Pixel& b = pixels_y_minus_1[i];
Pixel c;
if (i != 0) {
a = pixels[i - 1];
c = pixels_y_minus_1[i - 1];
}
x.v[0] += paeth_predictor(a.v[0], b.v[0], c.v[0]);
x.v[1] += paeth_predictor(a.v[1], b.v[1], c.v[1]);
x.v[2] += paeth_predictor(a.v[2], b.v[2], c.v[2]);
if constexpr (has_alpha)
x.v[3] += paeth_predictor(a.v[3], b.v[3], c.v[3]);
}
}
}
template<typename T>
ALWAYS_INLINE static void unpack_grayscale_without_alpha(PNGLoadingContext& context)
{
for (int y = 0; y < context.height; ++y) {
auto* gray_values = reinterpret_cast<const T*>(context.scanlines[y].data.data());
for (int i = 0; i < context.width; ++i) {
auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
pixel.r = gray_values[i];
pixel.g = gray_values[i];
pixel.b = gray_values[i];
pixel.a = 0xff;
}
}
}
template<typename T>
ALWAYS_INLINE static void unpack_grayscale_with_alpha(PNGLoadingContext& context)
{
for (int y = 0; y < context.height; ++y) {
auto* tuples = reinterpret_cast<const Tuple<T>*>(context.scanlines[y].data.data());
for (int i = 0; i < context.width; ++i) {
auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
pixel.r = tuples[i].gray;
pixel.g = tuples[i].gray;
pixel.b = tuples[i].gray;
pixel.a = tuples[i].a;
}
}
}
template<typename T>
ALWAYS_INLINE static void unpack_triplets_without_alpha(PNGLoadingContext& context)
{
for (int y = 0; y < context.height; ++y) {
auto* triplets = reinterpret_cast<const Triplet<T>*>(context.scanlines[y].data.data());
for (int i = 0; i < context.width; ++i) {
auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
pixel.r = triplets[i].r;
pixel.g = triplets[i].g;
pixel.b = triplets[i].b;
pixel.a = 0xff;
}
}
}
NEVER_INLINE FLATTEN static bool unfilter(PNGLoadingContext& context)
{
// First unpack the scanlines to RGBA:
switch (context.color_type) {
case 0:
if (context.bit_depth == 8) {
unpack_grayscale_without_alpha<u8>(context);
} else if (context.bit_depth == 16) {
unpack_grayscale_without_alpha<u16>(context);
} else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) {
auto bit_depth_squared = context.bit_depth * context.bit_depth;
auto pixels_per_byte = 8 / context.bit_depth;
auto mask = (1 << context.bit_depth) - 1;
for (int y = 0; y < context.height; ++y) {
auto* gray_values = context.scanlines[y].data.data();
for (int x = 0; x < context.width; ++x) {
auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (x % pixels_per_byte));
auto value = (gray_values[x / pixels_per_byte] >> bit_offset) & mask;
auto& pixel = (Pixel&)context.bitmap->scanline(y)[x];
pixel.r = value * (0xff / bit_depth_squared);
pixel.g = value * (0xff / bit_depth_squared);
pixel.b = value * (0xff / bit_depth_squared);
pixel.a = 0xff;
}
}
} else {
ASSERT_NOT_REACHED();
}
break;
case 4:
if (context.bit_depth == 8) {
unpack_grayscale_with_alpha<u8>(context);
} else if (context.bit_depth == 16) {
unpack_grayscale_with_alpha<u16>(context);
} else {
ASSERT_NOT_REACHED();
}
break;
case 2:
if (context.bit_depth == 8) {
unpack_triplets_without_alpha<u8>(context);
} else if (context.bit_depth == 16) {
unpack_triplets_without_alpha<u16>(context);
} else {
ASSERT_NOT_REACHED();
}
break;
case 6:
if (context.bit_depth == 8) {
for (int y = 0; y < context.height; ++y) {
memcpy(context.bitmap->scanline(y), context.scanlines[y].data.data(), context.scanlines[y].data.size());
}
} else if (context.bit_depth == 16) {
for (int y = 0; y < context.height; ++y) {
auto* triplets = reinterpret_cast<const Quad<u16>*>(context.scanlines[y].data.data());
for (int i = 0; i < context.width; ++i) {
auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
pixel.r = triplets[i].r & 0xFF;
pixel.g = triplets[i].g & 0xFF;
pixel.b = triplets[i].b & 0xFF;
pixel.a = triplets[i].a & 0xFF;
}
}
} else {
ASSERT_NOT_REACHED();
}
break;
case 3:
if (context.bit_depth == 8) {
for (int y = 0; y < context.height; ++y) {
auto* palette_index = context.scanlines[y].data.data();
for (int i = 0; i < context.width; ++i) {
auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
if (palette_index[i] >= context.palette_data.size())
return false;
auto& color = context.palette_data.at((int)palette_index[i]);
auto transparency = context.palette_transparency_data.size() >= palette_index[i] + 1u
? context.palette_transparency_data.data()[palette_index[i]]
: 0xff;
pixel.r = color.r;
pixel.g = color.g;
pixel.b = color.b;
pixel.a = transparency;
}
}
} else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) {
auto pixels_per_byte = 8 / context.bit_depth;
auto mask = (1 << context.bit_depth) - 1;
for (int y = 0; y < context.height; ++y) {
auto* palette_indexes = context.scanlines[y].data.data();
for (int i = 0; i < context.width; ++i) {
auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (i % pixels_per_byte));
auto palette_index = (palette_indexes[i / pixels_per_byte] >> bit_offset) & mask;
auto& pixel = (Pixel&)context.bitmap->scanline(y)[i];
if ((size_t)palette_index >= context.palette_data.size())
return false;
auto& color = context.palette_data.at(palette_index);
auto transparency = context.palette_transparency_data.size() >= palette_index + 1u
? context.palette_transparency_data.data()[palette_index]
: 0xff;
pixel.r = color.r;
pixel.g = color.g;
pixel.b = color.b;
pixel.a = transparency;
}
}
} else {
ASSERT_NOT_REACHED();
}
break;
default:
ASSERT_NOT_REACHED();
break;
}
u8 dummy_scanline[context.width * sizeof(RGBA32)];
for (int y = 0; y < context.height; ++y) {
auto filter = context.scanlines[y].filter;
if (filter == 0) {
if (context.has_alpha())
unfilter_impl<true, 0>(*context.bitmap, y, dummy_scanline);
else
unfilter_impl<false, 0>(*context.bitmap, y, dummy_scanline);
continue;
}
if (filter == 1) {
if (context.has_alpha())
unfilter_impl<true, 1>(*context.bitmap, y, dummy_scanline);
else
unfilter_impl<false, 1>(*context.bitmap, y, dummy_scanline);
continue;
}
if (filter == 2) {
if (context.has_alpha())
unfilter_impl<true, 2>(*context.bitmap, y, dummy_scanline);
else
unfilter_impl<false, 2>(*context.bitmap, y, dummy_scanline);
continue;
}
if (filter == 3) {
if (context.has_alpha())
unfilter_impl<true, 3>(*context.bitmap, y, dummy_scanline);
else
unfilter_impl<false, 3>(*context.bitmap, y, dummy_scanline);
continue;
}
if (filter == 4) {
if (context.has_alpha())
unfilter_impl<true, 4>(*context.bitmap, y, dummy_scanline);
else
unfilter_impl<false, 4>(*context.bitmap, y, dummy_scanline);
continue;
}
}
return true;
}
static bool decode_png_header(PNGLoadingContext& context)
{
if (context.state >= PNGLoadingContext::HeaderDecoded)
return true;
if (!context.data || context.data_size < sizeof(png_header)) {
#ifdef PNG_DEBUG
dbgln("Missing PNG header");
#endif
context.state = PNGLoadingContext::State::Error;
return false;
}
if (memcmp(context.data, png_header, sizeof(png_header)) != 0) {
#ifdef PNG_DEBUG
dbgln("Invalid PNG header");
#endif
context.state = PNGLoadingContext::State::Error;
return false;
}
context.state = PNGLoadingContext::HeaderDecoded;
return true;
}
static bool decode_png_size(PNGLoadingContext& context)
{
if (context.state >= PNGLoadingContext::SizeDecoded)
return true;
if (context.state < PNGLoadingContext::HeaderDecoded) {
if (!decode_png_header(context))
return false;
}
const u8* data_ptr = context.data + sizeof(png_header);
size_t data_remaining = context.data_size - sizeof(png_header);
Streamer streamer(data_ptr, data_remaining);
while (!streamer.at_end()) {
if (!process_chunk(streamer, context)) {
context.state = PNGLoadingContext::State::Error;
return false;
}
if (context.width && context.height) {
context.state = PNGLoadingContext::State::SizeDecoded;
return true;
}
}
return false;
}
static bool decode_png_chunks(PNGLoadingContext& context)
{
if (context.state >= PNGLoadingContext::State::ChunksDecoded)
return true;
if (context.state < PNGLoadingContext::HeaderDecoded) {
if (!decode_png_header(context))
return false;
}
const u8* data_ptr = context.data + sizeof(png_header);
int data_remaining = context.data_size - sizeof(png_header);
context.compressed_data.ensure_capacity(context.data_size);
Streamer streamer(data_ptr, data_remaining);
while (!streamer.at_end()) {
if (!process_chunk(streamer, context)) {
context.state = PNGLoadingContext::State::Error;
return false;
}
}
context.state = PNGLoadingContext::State::ChunksDecoded;
return true;
}
static bool decode_png_bitmap_simple(PNGLoadingContext& context)
{
Streamer streamer(context.decompression_buffer, context.decompression_buffer_size);
for (int y = 0; y < context.height; ++y) {
u8 filter;
if (!streamer.read(filter)) {
context.state = PNGLoadingContext::State::Error;
return false;
}
if (filter > 4) {
#ifdef PNG_DEBUG
dbg() << "Invalid PNG filter: " << filter;
#endif
context.state = PNGLoadingContext::State::Error;
return false;
}
context.scanlines.append({ filter });
auto& scanline_buffer = context.scanlines.last().data;
auto row_size = context.compute_row_size_for_width(context.width);
if (row_size.has_overflow())
return false;
if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) {
context.state = PNGLoadingContext::State::Error;
return false;
}
}
context.bitmap = Bitmap::create_purgeable(context.has_alpha() ? BitmapFormat::RGBA32 : BitmapFormat::RGB32, { context.width, context.height });
if (!context.bitmap) {
context.state = PNGLoadingContext::State::Error;
return false;
}
return unfilter(context);
}
static int adam7_height(PNGLoadingContext& context, int pass)
{
switch (pass) {
case 1:
return (context.height + 7) / 8;
case 2:
return (context.height + 7) / 8;
case 3:
return (context.height + 3) / 8;
case 4:
return (context.height + 3) / 4;
case 5:
return (context.height + 1) / 4;
case 6:
return (context.height + 1) / 2;
case 7:
return context.height / 2;
default:
ASSERT_NOT_REACHED();
}
}
static int adam7_width(PNGLoadingContext& context, int pass)
{
switch (pass) {
case 1:
return (context.width + 7) / 8;
case 2:
return (context.width + 3) / 8;
case 3:
return (context.width + 3) / 4;
case 4:
return (context.width + 1) / 4;
case 5:
return (context.width + 1) / 2;
case 6:
return context.width / 2;
case 7:
return context.width;
default:
ASSERT_NOT_REACHED();
}
}
// Index 0 unused (non-interlaced case)
static int adam7_starty[8] = { 0, 0, 0, 4, 0, 2, 0, 1 };
static int adam7_startx[8] = { 0, 0, 4, 0, 2, 0, 1, 0 };
static int adam7_stepy[8] = { 1, 8, 8, 8, 4, 4, 2, 2 };
static int adam7_stepx[8] = { 1, 8, 8, 4, 4, 2, 2, 1 };
static bool decode_adam7_pass(PNGLoadingContext& context, Streamer& streamer, int pass)
{
PNGLoadingContext subimage_context;
subimage_context.width = adam7_width(context, pass);
subimage_context.height = adam7_height(context, pass);
subimage_context.channels = context.channels;
subimage_context.color_type = context.color_type;
subimage_context.palette_data = context.palette_data;
subimage_context.palette_transparency_data = context.palette_transparency_data;
subimage_context.bit_depth = context.bit_depth;
subimage_context.filter_method = context.filter_method;
// For small images, some passes might be empty
if (!subimage_context.width || !subimage_context.height)
return true;
subimage_context.scanlines.clear_with_capacity();
for (int y = 0; y < subimage_context.height; ++y) {
u8 filter;
if (!streamer.read(filter)) {
context.state = PNGLoadingContext::State::Error;
return false;
}
if (filter > 4) {
#ifdef PNG_DEBUG
dbg() << "Invalid PNG filter: " << filter;
#endif
context.state = PNGLoadingContext::State::Error;
return false;
}
subimage_context.scanlines.append({ filter });
auto& scanline_buffer = subimage_context.scanlines.last().data;
auto row_size = context.compute_row_size_for_width(subimage_context.width);
if (row_size.has_overflow())
return false;
if (!streamer.wrap_bytes(scanline_buffer, row_size.value())) {
context.state = PNGLoadingContext::State::Error;
return false;
}
}
subimage_context.bitmap = Bitmap::create(context.bitmap->format(), { subimage_context.width, subimage_context.height });
if (!unfilter(subimage_context)) {
subimage_context.bitmap = nullptr;
return false;
}
// Copy the subimage data into the main image according to the pass pattern
for (int y = 0, dy = adam7_starty[pass]; y < subimage_context.height && dy < context.height; ++y, dy += adam7_stepy[pass]) {
for (int x = 0, dx = adam7_startx[pass]; x < subimage_context.width && dy < context.width; ++x, dx += adam7_stepx[pass]) {
context.bitmap->set_pixel(dx, dy, subimage_context.bitmap->get_pixel(x, y));
}
}
return true;
}
static bool decode_png_adam7(PNGLoadingContext& context)
{
Streamer streamer(context.decompression_buffer, context.decompression_buffer_size);
context.bitmap = Bitmap::create_purgeable(context.has_alpha() ? BitmapFormat::RGBA32 : BitmapFormat::RGB32, { context.width, context.height });
if (!context.bitmap)
return false;
for (int pass = 1; pass <= 7; ++pass) {
if (!decode_adam7_pass(context, streamer, pass))
return false;
}
return true;
}
static bool decode_png_bitmap(PNGLoadingContext& context)
{
if (context.state < PNGLoadingContext::State::ChunksDecoded) {
if (!decode_png_chunks(context))
return false;
}
if (context.state >= PNGLoadingContext::State::BitmapDecoded)
return true;
if (context.width == -1 || context.height == -1)
return false; // Didn't see an IHDR chunk.
if (context.color_type == 3 && context.palette_data.is_empty())
return false; // Didn't see a PLTE chunk for a palettized image, or it was empty.
unsigned long srclen = context.compressed_data.size() - 6;
unsigned long destlen = 0;
int ret = puff(nullptr, &destlen, context.compressed_data.data() + 2, &srclen);
if (ret != 0) {
context.state = PNGLoadingContext::State::Error;
return false;
}
context.decompression_buffer_size = destlen;
#ifdef __serenity__
context.decompression_buffer = (u8*)mmap_with_name(nullptr, context.decompression_buffer_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0, "PNG decompression buffer");
#else
context.decompression_buffer = (u8*)mmap(nullptr, context.decompression_buffer_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);
#endif
ret = puff(context.decompression_buffer, &destlen, context.compressed_data.data() + 2, &srclen);
if (ret != 0) {
context.state = PNGLoadingContext::State::Error;
return false;
}
context.compressed_data.clear();
context.scanlines.ensure_capacity(context.height);
switch (context.interlace_method) {
case PngInterlaceMethod::Null:
if (!decode_png_bitmap_simple(context))
return false;
break;
case PngInterlaceMethod::Adam7:
if (!decode_png_adam7(context))
return false;
break;
default:
ASSERT_NOT_REACHED();
}
munmap(context.decompression_buffer, context.decompression_buffer_size);
context.decompression_buffer = nullptr;
context.decompression_buffer_size = 0;
context.state = PNGLoadingContext::State::BitmapDecoded;
return true;
}
static RefPtr<Gfx::Bitmap> load_png_impl(const u8* data, size_t data_size)
{
PNGLoadingContext context;
context.data = data;
context.data_size = data_size;
if (!decode_png_chunks(context))
return nullptr;
if (!decode_png_bitmap(context))
return nullptr;
return context.bitmap;
}
static bool is_valid_compression_method(u8 compression_method)
{
return compression_method == 0;
}
static bool is_valid_filter_method(u8 filter_method)
{
return filter_method <= 4;
}
static bool process_IHDR(ReadonlyBytes data, PNGLoadingContext& context)
{
if (data.size() < (int)sizeof(PNG_IHDR))
return false;
auto& ihdr = *(const PNG_IHDR*)data.data();
if (ihdr.width > maximum_width_for_decoded_images || ihdr.height > maximum_height_for_decoded_images) {
dbgln("This PNG is too large for comfort: {}x{}", (u32)ihdr.width, (u32)ihdr.height);
return false;
}
if (!is_valid_compression_method(ihdr.compression_method)) {
dbgln("PNG has invalid compression method {}", ihdr.compression_method);
return false;
}
if (!is_valid_filter_method(ihdr.filter_method)) {
dbgln("PNG has invalid filter method {}", ihdr.filter_method);
return false;
}
context.width = ihdr.width;
context.height = ihdr.height;
context.bit_depth = ihdr.bit_depth;
context.color_type = ihdr.color_type;
context.compression_method = ihdr.compression_method;
context.filter_method = ihdr.filter_method;
context.interlace_method = ihdr.interlace_method;
#ifdef PNG_DEBUG
printf("PNG: %dx%d (%d bpp)\n", context.width, context.height, context.bit_depth);
printf(" Color type: %d\n", context.color_type);
printf("Compress Method: %d\n", context.compression_method);
printf(" Filter Method: %d\n", context.filter_method);
printf(" Interlace type: %d\n", context.interlace_method);
#endif
if (context.interlace_method != PngInterlaceMethod::Null && context.interlace_method != PngInterlaceMethod::Adam7) {
#ifdef PNG_DEBUG
dbgln("PNGLoader::process_IHDR: unknown interlace method: {}", context.interlace_method);
#endif
return false;
}
switch (context.color_type) {
case 0: // Each pixel is a grayscale sample.
if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8 && context.bit_depth != 16)
return false;
context.channels = 1;
break;
case 4: // Each pixel is a grayscale sample, followed by an alpha sample.
if (context.bit_depth != 8 && context.bit_depth != 16)
return false;
context.channels = 2;
break;
case 2: // Each pixel is an RGB sample
if (context.bit_depth != 8 && context.bit_depth != 16)
return false;
context.channels = 3;
break;
case 3: // Each pixel is a palette index; a PLTE chunk must appear.
if (context.bit_depth != 1 && context.bit_depth != 2 && context.bit_depth != 4 && context.bit_depth != 8)
return false;
context.channels = 1;
break;
case 6: // Each pixel is an RGB sample, followed by an alpha sample.
if (context.bit_depth != 8 && context.bit_depth != 16)
return false;
context.channels = 4;
break;
default:
return false;
}
return true;
}
static bool process_IDAT(ReadonlyBytes data, PNGLoadingContext& context)
{
context.compressed_data.append(data.data(), data.size());
return true;
}
static bool process_PLTE(ReadonlyBytes data, PNGLoadingContext& context)
{
context.palette_data.append((const PaletteEntry*)data.data(), data.size() / 3);
return true;
}
static bool process_tRNS(ReadonlyBytes data, PNGLoadingContext& context)
{
switch (context.color_type) {
case 3:
context.palette_transparency_data.append(data.data(), data.size());
break;
}
return true;
}
static bool process_chunk(Streamer& streamer, PNGLoadingContext& context)
{
u32 chunk_size;
if (!streamer.read(chunk_size)) {
#ifdef PNG_DEBUG
printf("Bail at chunk_size\n");
#endif
return false;
}
u8 chunk_type[5];
chunk_type[4] = '\0';
if (!streamer.read_bytes(chunk_type, 4)) {
#ifdef PNG_DEBUG
printf("Bail at chunk_type\n");
#endif
return false;
}
ReadonlyBytes chunk_data;
if (!streamer.wrap_bytes(chunk_data, chunk_size)) {
#ifdef PNG_DEBUG
printf("Bail at chunk_data\n");
#endif
return false;
}
u32 chunk_crc;
if (!streamer.read(chunk_crc)) {
#ifdef PNG_DEBUG
printf("Bail at chunk_crc\n");
#endif
return false;
}
#ifdef PNG_DEBUG
printf("Chunk type: '%s', size: %u, crc: %x\n", chunk_type, chunk_size, chunk_crc);
#endif
if (!strcmp((const char*)chunk_type, "IHDR"))
return process_IHDR(chunk_data, context);
if (!strcmp((const char*)chunk_type, "IDAT"))
return process_IDAT(chunk_data, context);
if (!strcmp((const char*)chunk_type, "PLTE"))
return process_PLTE(chunk_data, context);
if (!strcmp((const char*)chunk_type, "tRNS"))
return process_tRNS(chunk_data, context);
return true;
}
PNGImageDecoderPlugin::PNGImageDecoderPlugin(const u8* data, size_t size)
{
m_context = make<PNGLoadingContext>();
m_context->data = data;
m_context->data_size = size;
}
PNGImageDecoderPlugin::~PNGImageDecoderPlugin()
{
}
IntSize PNGImageDecoderPlugin::size()
{
if (m_context->state == PNGLoadingContext::State::Error)
return {};
if (m_context->state < PNGLoadingContext::State::SizeDecoded) {
bool success = decode_png_size(*m_context);
if (!success)
return {};
}
return { m_context->width, m_context->height };
}
RefPtr<Gfx::Bitmap> PNGImageDecoderPlugin::bitmap()
{
if (m_context->state == PNGLoadingContext::State::Error)
return nullptr;
if (m_context->state < PNGLoadingContext::State::BitmapDecoded) {
// NOTE: This forces the chunk decoding to happen.
bool success = decode_png_bitmap(*m_context);
if (!success)
return nullptr;
}
ASSERT(m_context->bitmap);
return m_context->bitmap;
}
void PNGImageDecoderPlugin::set_volatile()
{
if (m_context->bitmap)
m_context->bitmap->set_volatile();
}
bool PNGImageDecoderPlugin::set_nonvolatile()
{
if (!m_context->bitmap)
return false;
return m_context->bitmap->set_nonvolatile();
}
bool PNGImageDecoderPlugin::sniff()
{
return decode_png_header(*m_context);
}
bool PNGImageDecoderPlugin::is_animated()
{
return false;
}
size_t PNGImageDecoderPlugin::loop_count()
{
return 0;
}
size_t PNGImageDecoderPlugin::frame_count()
{
return 1;
}
ImageFrameDescriptor PNGImageDecoderPlugin::frame(size_t i)
{
if (i > 0) {
return { bitmap(), 0 };
}
return {};
}
}