ladybird/Kernel/Devices/SerialDevice.cpp
Sahan Fernando d0f314b23c Kernel: Fix subtle race condition in sys$write implementation
There is a slight race condition in our implementation of write().
We call File::can_write() before attempting to write to it (blocking if
it returns false). If it returns true, we assume that we can write to
the file, and our code assumes that File::write() cannot possibly fail
by being blocked. There is, however, the rare case where another process
writes to the file and prevents further writes in between the call to
Files::can_write() and File::write() in the first process. This would
result in the first process calling File::write() when it cannot be
written to.

We fix this by adding a mechanism for File::can_write() to signal that
it was blocked, making it the responsibilty of File::write() to check
whether it can write and then finally making sys$write() check if the
write failed due to it being blocked.
2021-05-18 16:33:15 +02:00

145 lines
3.8 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/IO.h>
namespace Kernel {
UNMAP_AFTER_INIT SerialDevice::SerialDevice(IOAddress base_addr, unsigned minor)
: CharacterDevice(4, minor)
, m_base_addr(base_addr)
{
initialize();
}
UNMAP_AFTER_INIT SerialDevice::~SerialDevice()
{
}
bool SerialDevice::can_read(const FileDescription&, size_t) const
{
return (get_line_status() & DataReady) != 0;
}
KResultOr<size_t> SerialDevice::read(FileDescription&, u64, UserOrKernelBuffer& buffer, size_t size)
{
if (!size)
return 0;
ScopedSpinLock lock(m_serial_lock);
if (!(get_line_status() & DataReady))
return 0;
return buffer.write_buffered<128>(size, [&](u8* data, size_t data_size) {
for (size_t i = 0; i < data_size; i++)
data[i] = m_base_addr.in<u8>();
return data_size;
});
}
bool SerialDevice::can_write(const FileDescription&, size_t) const
{
return (get_line_status() & EmptyTransmitterHoldingRegister) != 0;
}
KResultOr<size_t> SerialDevice::write(FileDescription& description, u64, const UserOrKernelBuffer& buffer, size_t size)
{
if (!size)
return 0;
ScopedSpinLock lock(m_serial_lock);
if (!can_write(description, size))
return EAGAIN;
return buffer.read_buffered<128>(size, [&](u8 const* data, size_t data_size) {
for (size_t i = 0; i < data_size; i++)
put_char(data[i]);
return data_size;
});
}
void SerialDevice::put_char(char ch)
{
while ((get_line_status() & EmptyTransmitterHoldingRegister) == 0)
;
if (ch == '\n' && !m_last_put_char_was_carriage_return)
m_base_addr.out<u8>('\r');
m_base_addr.out<u8>(ch);
m_last_put_char_was_carriage_return = (ch == '\r');
}
String SerialDevice::device_name() const
{
return String::formatted("ttyS{}", minor() - 64);
}
UNMAP_AFTER_INIT void SerialDevice::initialize()
{
set_interrupts(false);
set_baud(Baud38400);
set_line_control(None, One, EightBits);
set_fifo_control(EnableFIFO | ClearReceiveFIFO | ClearTransmitFIFO | TriggerLevel4);
set_modem_control(RequestToSend | DataTerminalReady);
}
UNMAP_AFTER_INIT void SerialDevice::set_interrupts(bool interrupt_enable)
{
m_interrupt_enable = interrupt_enable;
m_base_addr.offset(1).out<u8>(interrupt_enable);
}
void SerialDevice::set_baud(Baud baud)
{
m_baud = baud;
m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() | 0x80); // turn on DLAB
m_base_addr.out<u8>(((u8)(baud)) & 0xff); // lower half of divisor
m_base_addr.offset(1).out<u8>(((u8)(baud)) >> 2); // upper half of divisor
m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() & 0x7f); // turn off DLAB
}
void SerialDevice::set_fifo_control(u8 fifo_control)
{
m_fifo_control = fifo_control;
m_base_addr.offset(2).out<u8>(fifo_control);
}
void SerialDevice::set_line_control(ParitySelect parity_select, StopBits stop_bits, WordLength word_length)
{
m_parity_select = parity_select;
m_stop_bits = stop_bits;
m_word_length = word_length;
m_base_addr.offset(3).out<u8>((m_base_addr.offset(3).in<u8>() & ~0x3f) | parity_select | stop_bits | word_length);
}
void SerialDevice::set_break_enable(bool break_enable)
{
m_break_enable = break_enable;
m_base_addr.offset(3).out<u8>(m_base_addr.offset(3).in<u8>() & (break_enable ? 0xff : 0xbf));
}
void SerialDevice::set_modem_control(u8 modem_control)
{
m_modem_control = modem_control;
m_base_addr.offset(4).out<u8>(modem_control);
}
u8 SerialDevice::get_line_status() const
{
return m_base_addr.offset(5).in<u8>();
}
}