ladybird/Kernel/VirtIO/VirtIO.cpp
Liav A 3fae7ca113 Kernel: Clarify and make it easy to not use raw numbers
Let's put the PCI IDs as enums in the PCI namespace so they're free to
pollute that namespace, but it's also more easier to use them.
2021-07-03 16:28:49 +02:00

388 lines
14 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Bus/PCI/IDs.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Sections.h>
#include <Kernel/VirtIO/VirtIO.h>
#include <Kernel/VirtIO/VirtIOConsole.h>
#include <Kernel/VirtIO/VirtIORNG.h>
namespace Kernel {
UNMAP_AFTER_INIT void VirtIO::detect()
{
if (kernel_command_line().disable_virtio())
return;
PCI::enumerate([&](const PCI::Address& address, PCI::ID id) {
if (address.is_null() || id.is_null())
return;
// TODO: We should also be checking that the device_id is in between 0x1000 - 0x107F inclusive
if (id.vendor_id != PCI::VendorID::VirtIO)
return;
switch (id.device_id) {
case PCI::DeviceID::VirtIOConsole: {
[[maybe_unused]] auto& unused = adopt_ref(*new VirtIOConsole(address)).leak_ref();
break;
}
case PCI::DeviceID::VirtIOEntropy: {
[[maybe_unused]] auto& unused = adopt_ref(*new VirtIORNG(address)).leak_ref();
break;
}
case PCI::DeviceID::VirtIOGPU: {
// This should have been initialized by the graphics subsystem
break;
}
default:
dbgln_if(VIRTIO_DEBUG, "VirtIO: Unknown VirtIO device with ID: {}", id.device_id);
break;
}
});
}
UNMAP_AFTER_INIT VirtIODevice::VirtIODevice(PCI::Address address, String class_name)
: PCI::Device(address, PCI::get_interrupt_line(address))
, m_class_name(move(class_name))
, m_io_base(IOAddress(PCI::get_BAR0(pci_address()) & ~1))
{
dbgln("{}: Found @ {}", m_class_name, pci_address());
enable_bus_mastering(pci_address());
PCI::enable_interrupt_line(pci_address());
enable_irq();
auto capabilities = PCI::get_physical_id(address).capabilities();
for (auto& capability : capabilities) {
if (capability.id() == PCI_CAPABILITY_VENDOR_SPECIFIC) {
// We have a virtio_pci_cap
auto cfg = make<Configuration>();
auto raw_config_type = capability.read8(0x3);
if (raw_config_type < static_cast<u8>(ConfigurationType::Common) || raw_config_type > static_cast<u8>(ConfigurationType::PCI)) {
dbgln("{}: Unknown capability configuration type: {}", m_class_name, raw_config_type);
return;
}
cfg->cfg_type = static_cast<ConfigurationType>(raw_config_type);
auto cap_length = capability.read8(0x2);
if (cap_length < 0x10) {
dbgln("{}: Unexpected capability size: {}", m_class_name, cap_length);
break;
}
cfg->bar = capability.read8(0x4);
if (cfg->bar > 0x5) {
dbgln("{}: Unexpected capability bar value: {}", m_class_name, cfg->bar);
break;
}
cfg->offset = capability.read32(0x8);
cfg->length = capability.read32(0xc);
dbgln_if(VIRTIO_DEBUG, "{}: Found configuration {}, bar: {}, offset: {}, length: {}", m_class_name, (u32)cfg->cfg_type, cfg->bar, cfg->offset, cfg->length);
if (cfg->cfg_type == ConfigurationType::Common)
m_use_mmio = true;
else if (cfg->cfg_type == ConfigurationType::Notify)
m_notify_multiplier = capability.read32(0x10);
m_configs.append(move(cfg));
}
}
if (m_use_mmio) {
m_common_cfg = get_config(ConfigurationType::Common, 0);
m_notify_cfg = get_config(ConfigurationType::Notify, 0);
m_isr_cfg = get_config(ConfigurationType::ISR, 0);
}
reset_device();
set_status_bit(DEVICE_STATUS_ACKNOWLEDGE);
set_status_bit(DEVICE_STATUS_DRIVER);
}
VirtIODevice::~VirtIODevice()
{
}
auto VirtIODevice::mapping_for_bar(u8 bar) -> MappedMMIO&
{
VERIFY(m_use_mmio);
auto& mapping = m_mmio[bar];
if (!mapping.base) {
mapping.size = PCI::get_BAR_space_size(pci_address(), bar);
mapping.base = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR(pci_address(), bar))), page_round_up(mapping.size), "VirtIO MMIO", Region::Access::Read | Region::Access::Write, Region::Cacheable::No);
if (!mapping.base)
dbgln("{}: Failed to map bar {}", m_class_name, bar);
}
return mapping;
}
void VirtIODevice::notify_queue(u16 queue_index)
{
dbgln_if(VIRTIO_DEBUG, "{}: notifying about queue change at idx: {}", m_class_name, queue_index);
if (!m_notify_cfg)
out<u16>(REG_QUEUE_NOTIFY, queue_index);
else
config_write16(*m_notify_cfg, get_queue(queue_index).notify_offset() * m_notify_multiplier, queue_index);
}
u8 VirtIODevice::config_read8(const Configuration& config, u32 offset)
{
return mapping_for_bar(config.bar).read<u8>(config.offset + offset);
}
u16 VirtIODevice::config_read16(const Configuration& config, u32 offset)
{
return mapping_for_bar(config.bar).read<u16>(config.offset + offset);
}
u32 VirtIODevice::config_read32(const Configuration& config, u32 offset)
{
return mapping_for_bar(config.bar).read<u32>(config.offset + offset);
}
void VirtIODevice::config_write8(const Configuration& config, u32 offset, u8 value)
{
mapping_for_bar(config.bar).write(config.offset + offset, value);
}
void VirtIODevice::config_write16(const Configuration& config, u32 offset, u16 value)
{
mapping_for_bar(config.bar).write(config.offset + offset, value);
}
void VirtIODevice::config_write32(const Configuration& config, u32 offset, u32 value)
{
mapping_for_bar(config.bar).write(config.offset + offset, value);
}
void VirtIODevice::config_write64(const Configuration& config, u32 offset, u64 value)
{
mapping_for_bar(config.bar).write(config.offset + offset, value);
}
u8 VirtIODevice::read_status_bits()
{
if (!m_common_cfg)
return in<u8>(REG_DEVICE_STATUS);
return config_read8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS);
}
void VirtIODevice::mask_status_bits(u8 status_mask)
{
m_status &= status_mask;
if (!m_common_cfg)
out<u8>(REG_DEVICE_STATUS, m_status);
else
config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, m_status);
}
void VirtIODevice::set_status_bit(u8 status_bit)
{
m_status |= status_bit;
if (!m_common_cfg)
out<u8>(REG_DEVICE_STATUS, m_status);
else
config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, m_status);
}
u64 VirtIODevice::get_device_features()
{
if (!m_common_cfg)
return in<u32>(REG_DEVICE_FEATURES);
config_write32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE_SELECT, 0);
auto lower_bits = config_read32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE);
config_write32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE_SELECT, 1);
u64 upper_bits = (u64)config_read32(*m_common_cfg, COMMON_CFG_DEVICE_FEATURE) << 32;
return upper_bits | lower_bits;
}
bool VirtIODevice::accept_device_features(u64 device_features, u64 accepted_features)
{
VERIFY(!m_did_accept_features);
m_did_accept_features = true;
if (is_feature_set(device_features, VIRTIO_F_VERSION_1)) {
accepted_features |= VIRTIO_F_VERSION_1; // let the device know were not a legacy driver
}
if (is_feature_set(device_features, VIRTIO_F_RING_PACKED)) {
dbgln_if(VIRTIO_DEBUG, "{}: packed queues not yet supported", m_class_name);
accepted_features &= ~(VIRTIO_F_RING_PACKED);
}
// TODO: implement indirect descriptors to allow queue_size buffers instead of buffers totalling (PAGE_SIZE * queue_size) bytes
if (is_feature_set(device_features, VIRTIO_F_INDIRECT_DESC)) {
// accepted_features |= VIRTIO_F_INDIRECT_DESC;
}
if (is_feature_set(device_features, VIRTIO_F_IN_ORDER)) {
accepted_features |= VIRTIO_F_IN_ORDER;
}
dbgln_if(VIRTIO_DEBUG, "{}: Device features: {}", m_class_name, device_features);
dbgln_if(VIRTIO_DEBUG, "{}: Accepted features: {}", m_class_name, accepted_features);
if (!m_common_cfg) {
out<u32>(REG_GUEST_FEATURES, accepted_features);
} else {
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE_SELECT, 0);
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE, accepted_features);
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE_SELECT, 1);
config_write32(*m_common_cfg, COMMON_CFG_DRIVER_FEATURE, accepted_features >> 32);
}
set_status_bit(DEVICE_STATUS_FEATURES_OK);
m_status = read_status_bits();
if (!(m_status & DEVICE_STATUS_FEATURES_OK)) {
set_status_bit(DEVICE_STATUS_FAILED);
dbgln("{}: Features not accepted by host!", m_class_name);
return false;
}
m_accepted_features = accepted_features;
dbgln_if(VIRTIO_DEBUG, "{}: Features accepted by host", m_class_name);
return true;
}
void VirtIODevice::reset_device()
{
dbgln_if(VIRTIO_DEBUG, "{}: Reset device", m_class_name);
if (!m_common_cfg) {
mask_status_bits(0);
while (read_status_bits() != 0) {
// TODO: delay a bit?
}
return;
}
config_write8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS, 0);
while (config_read8(*m_common_cfg, COMMON_CFG_DEVICE_STATUS) != 0) {
// TODO: delay a bit?
}
}
bool VirtIODevice::setup_queue(u16 queue_index)
{
if (!m_common_cfg)
return false;
config_write16(*m_common_cfg, COMMON_CFG_QUEUE_SELECT, queue_index);
u16 queue_size = config_read16(*m_common_cfg, COMMON_CFG_QUEUE_SIZE);
if (queue_size == 0) {
dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] is unavailable!", m_class_name, queue_index);
return true;
}
u16 queue_notify_offset = config_read16(*m_common_cfg, COMMON_CFG_QUEUE_NOTIFY_OFF);
auto queue = make<VirtIOQueue>(queue_size, queue_notify_offset);
if (queue->is_null())
return false;
config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DESC, queue->descriptor_area().get());
config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DRIVER, queue->driver_area().get());
config_write64(*m_common_cfg, COMMON_CFG_QUEUE_DEVICE, queue->device_area().get());
dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] configured with size: {}", m_class_name, queue_index, queue_size);
m_queues.append(move(queue));
return true;
}
bool VirtIODevice::activate_queue(u16 queue_index)
{
if (!m_common_cfg)
return false;
config_write16(*m_common_cfg, COMMON_CFG_QUEUE_SELECT, queue_index);
config_write16(*m_common_cfg, COMMON_CFG_QUEUE_ENABLE, true);
dbgln_if(VIRTIO_DEBUG, "{}: Queue[{}] activated", m_class_name, queue_index);
return true;
}
bool VirtIODevice::setup_queues(u16 requested_queue_count)
{
VERIFY(!m_did_setup_queues);
m_did_setup_queues = true;
if (m_common_cfg) {
auto maximum_queue_count = config_read16(*m_common_cfg, COMMON_CFG_NUM_QUEUES);
if (requested_queue_count == 0) {
m_queue_count = maximum_queue_count;
} else if (requested_queue_count > maximum_queue_count) {
dbgln("{}: {} queues requested but only {} available!", m_class_name, m_queue_count, maximum_queue_count);
return false;
} else {
m_queue_count = requested_queue_count;
}
} else {
m_queue_count = requested_queue_count;
dbgln("{}: device's available queue count could not be determined!", m_class_name);
}
dbgln_if(VIRTIO_DEBUG, "{}: Setting up {} queues", m_class_name, m_queue_count);
for (u16 i = 0; i < m_queue_count; i++) {
if (!setup_queue(i))
return false;
}
for (u16 i = 0; i < m_queue_count; i++) { // Queues can only be activated *after* all others queues were also configured
if (!activate_queue(i))
return false;
}
return true;
}
void VirtIODevice::finish_init()
{
VERIFY(m_did_accept_features); // ensure features were negotiated
VERIFY(m_did_setup_queues); // ensure queues were set-up
VERIFY(!(m_status & DEVICE_STATUS_DRIVER_OK)); // ensure we didn't already finish the initialization
set_status_bit(DEVICE_STATUS_DRIVER_OK);
dbgln_if(VIRTIO_DEBUG, "{}: Finished initialization", m_class_name);
}
u8 VirtIODevice::isr_status()
{
if (!m_isr_cfg)
return in<u8>(REG_ISR_STATUS);
return config_read8(*m_isr_cfg, 0);
}
bool VirtIODevice::handle_irq(const RegisterState&)
{
u8 isr_type = isr_status();
if ((isr_type & (QUEUE_INTERRUPT | DEVICE_CONFIG_INTERRUPT)) == 0) {
dbgln_if(VIRTIO_DEBUG, "{}: Handling interrupt with unknown type: {}", m_class_name, isr_type);
return false;
}
if (isr_type & DEVICE_CONFIG_INTERRUPT) {
dbgln_if(VIRTIO_DEBUG, "{}: VirtIO Device config interrupt!", m_class_name);
if (!handle_device_config_change()) {
set_status_bit(DEVICE_STATUS_FAILED);
dbgln("{}: Failed to handle device config change!", m_class_name);
}
}
if (isr_type & QUEUE_INTERRUPT) {
dbgln_if(VIRTIO_DEBUG, "{}: VirtIO Queue interrupt!", m_class_name);
for (size_t i = 0; i < m_queues.size(); i++) {
if (get_queue(i).new_data_available()) {
handle_queue_update(i);
return true;
}
}
dbgln_if(VIRTIO_DEBUG, "{}: Got queue interrupt but all queues are up to date!", m_class_name);
}
return true;
}
void VirtIODevice::supply_chain_and_notify(u16 queue_index, VirtIOQueueChain& chain)
{
auto& queue = get_queue(queue_index);
VERIFY(&chain.queue() == &queue);
VERIFY(queue.lock().is_locked());
chain.submit_to_queue();
if (queue.should_notify())
notify_queue(queue_index);
}
}