ladybird/Kernel/Thread.h
Tom 69a9c78783 Kernel: Allow killing queued threads
We need to dequeue and wake threads that are waiting if the process
terminates.

Fixes #3603 without the HackStudio fixes in #3606.
2020-09-26 20:03:16 +02:00

769 lines
24 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Function.h>
#include <AK/IntrusiveList.h>
#include <AK/Optional.h>
#include <AK/OwnPtr.h>
#include <AK/String.h>
#include <AK/Vector.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Forward.h>
#include <Kernel/KResult.h>
#include <Kernel/Scheduler.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/UnixTypes.h>
#include <LibC/fd_set.h>
#include <LibELF/AuxiliaryVector.h>
namespace Kernel {
enum class ShouldUnblockThread {
No = 0,
Yes
};
struct SignalActionData {
VirtualAddress handler_or_sigaction;
u32 mask { 0 };
int flags { 0 };
};
struct ThreadSpecificData {
ThreadSpecificData* self;
};
#define THREAD_PRIORITY_MIN 1
#define THREAD_PRIORITY_LOW 10
#define THREAD_PRIORITY_NORMAL 30
#define THREAD_PRIORITY_HIGH 50
#define THREAD_PRIORITY_MAX 99
#define THREAD_AFFINITY_DEFAULT 0xffffffff
class Thread {
AK_MAKE_NONCOPYABLE(Thread);
AK_MAKE_NONMOVABLE(Thread);
friend class Process;
friend class Scheduler;
public:
inline static Thread* current()
{
return Processor::current().current_thread();
}
explicit Thread(NonnullRefPtr<Process>);
~Thread();
static Thread* from_tid(ThreadID);
static void finalize_dying_threads();
ThreadID tid() const { return m_tid; }
ProcessID pid() const;
void set_priority(u32 p) { m_priority = p; }
u32 priority() const { return m_priority; }
void set_priority_boost(u32 boost) { m_priority_boost = boost; }
u32 priority_boost() const { return m_priority_boost; }
u32 effective_priority() const;
KResult try_join(Thread& joiner)
{
if (&joiner == this)
return KResult(-EDEADLK);
ScopedSpinLock lock(m_lock);
if (!m_is_joinable || state() == Dead)
return KResult(-EINVAL);
Thread* expected = nullptr;
if (!m_joiner.compare_exchange_strong(expected, &joiner, AK::memory_order_acq_rel))
return KResult(-EINVAL);
// From this point on the thread is no longer joinable by anyone
// else. It also means that if the join is timed, it becomes
// detached when a timeout happens.
m_is_joinable = false;
return KSuccess;
}
void join_done()
{
// To avoid possible deadlocking, this function must not acquire
// m_lock. This deadlock could occur if the joiner times out
// almost at the same time as this thread, and calls into this
// function to clear the joiner.
m_joiner.store(nullptr, AK::memory_order_release);
}
void detach()
{
ScopedSpinLock lock(m_lock);
m_is_joinable = false;
}
bool is_joinable() const
{
ScopedSpinLock lock(m_lock);
return m_is_joinable;
}
Process& process() { return m_process; }
const Process& process() const { return m_process; }
String backtrace();
Vector<FlatPtr> raw_backtrace(FlatPtr ebp, FlatPtr eip) const;
const String& name() const { return m_name; }
void set_name(const StringView& s) { m_name = s; }
void set_name(String&& name) { m_name = move(name); }
void finalize();
enum State : u8 {
Invalid = 0,
Runnable,
Running,
Dying,
Dead,
Stopped,
Blocked,
Queued,
};
class Blocker {
public:
virtual ~Blocker() { }
virtual bool should_unblock(Thread&) = 0;
virtual const char* state_string() const = 0;
virtual bool is_reason_signal() const { return false; }
virtual timespec* override_timeout(timespec* timeout) { return timeout; }
virtual void was_unblocked() { }
void set_interrupted_by_death()
{
ScopedSpinLock lock(m_lock);
m_was_interrupted_by_death = true;
}
bool was_interrupted_by_death() const
{
ScopedSpinLock lock(m_lock);
return m_was_interrupted_by_death;
}
void set_interrupted_by_signal()
{
ScopedSpinLock lock(m_lock);
m_was_interrupted_while_blocked = true;
}
bool was_interrupted_by_signal() const
{
ScopedSpinLock lock(m_lock);
return m_was_interrupted_while_blocked;
}
protected:
mutable RecursiveSpinLock m_lock;
private:
bool m_was_interrupted_while_blocked { false };
bool m_was_interrupted_by_death { false };
friend class Thread;
};
class JoinBlocker final : public Blocker {
public:
explicit JoinBlocker(Thread& joinee, KResult& try_join_result, void*& joinee_exit_value);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Joining"; }
virtual void was_unblocked() override;
void joinee_exited(void* value);
private:
Thread* m_joinee;
void*& m_joinee_exit_value;
bool m_join_error { false };
};
class FileDescriptionBlocker : public Blocker {
public:
const FileDescription& blocked_description() const;
protected:
explicit FileDescriptionBlocker(const FileDescription&);
private:
NonnullRefPtr<FileDescription> m_blocked_description;
};
class AcceptBlocker final : public FileDescriptionBlocker {
public:
explicit AcceptBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Accepting"; }
};
class ConnectBlocker final : public FileDescriptionBlocker {
public:
explicit ConnectBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Connecting"; }
};
class WriteBlocker final : public FileDescriptionBlocker {
public:
explicit WriteBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Writing"; }
virtual timespec* override_timeout(timespec*) override;
private:
timespec m_deadline;
};
class ReadBlocker final : public FileDescriptionBlocker {
public:
explicit ReadBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Reading"; }
virtual timespec* override_timeout(timespec*) override;
private:
timespec m_deadline;
};
class ConditionBlocker final : public Blocker {
public:
ConditionBlocker(const char* state_string, Function<bool()>&& condition);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return m_state_string; }
private:
Function<bool()> m_block_until_condition;
const char* m_state_string { nullptr };
};
class SleepBlocker final : public Blocker {
public:
explicit SleepBlocker(u64 wakeup_time);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Sleeping"; }
private:
u64 m_wakeup_time { 0 };
};
class SelectBlocker final : public Blocker {
public:
typedef Vector<int, FD_SETSIZE> FDVector;
SelectBlocker(const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Selecting"; }
private:
const FDVector& m_select_read_fds;
const FDVector& m_select_write_fds;
const FDVector& m_select_exceptional_fds;
};
class WaitBlocker final : public Blocker {
public:
WaitBlocker(int wait_options, ProcessID& waitee_pid);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Waiting"; }
private:
int m_wait_options { 0 };
ProcessID& m_waitee_pid;
};
class SemiPermanentBlocker final : public Blocker {
public:
enum class Reason {
Signal,
};
SemiPermanentBlocker(Reason reason);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override
{
switch (m_reason) {
case Reason::Signal:
return "Signal";
}
ASSERT_NOT_REACHED();
}
virtual bool is_reason_signal() const override { return m_reason == Reason::Signal; }
private:
Reason m_reason;
};
void did_schedule() { ++m_times_scheduled; }
u32 times_scheduled() const { return m_times_scheduled; }
void resume_from_stopped();
bool is_stopped() const { return m_state == Stopped; }
bool is_blocked() const { return m_state == Blocked; }
bool has_blocker() const
{
ASSERT(m_lock.own_lock());
return m_blocker != nullptr;
}
const Blocker& blocker() const;
u32 cpu() const { return m_cpu.load(AK::MemoryOrder::memory_order_consume); }
void set_cpu(u32 cpu) { m_cpu.store(cpu, AK::MemoryOrder::memory_order_release); }
u32 affinity() const { return m_cpu_affinity; }
void set_affinity(u32 affinity) { m_cpu_affinity = affinity; }
u32 stack_ptr() const { return m_tss.esp; }
RegisterState& get_register_dump_from_stack();
TSS32& tss() { return m_tss; }
const TSS32& tss() const { return m_tss; }
State state() const { return m_state; }
const char* state_string() const;
u32 ticks() const { return m_ticks; }
VirtualAddress thread_specific_data() const { return m_thread_specific_data; }
size_t thread_specific_region_size() const { return m_thread_specific_region_size; }
u64 sleep(u64 ticks);
u64 sleep_until(u64 wakeup_time);
class BlockResult {
public:
enum Type {
WokeNormally,
NotBlocked,
InterruptedBySignal,
InterruptedByDeath,
InterruptedByTimeout,
};
BlockResult() = delete;
BlockResult(Type type)
: m_type(type)
{
}
bool operator==(Type type) const
{
return m_type == type;
}
bool was_interrupted() const
{
switch (m_type) {
case InterruptedBySignal:
case InterruptedByDeath:
case InterruptedByTimeout:
return true;
default:
return false;
}
}
private:
Type m_type;
};
template<typename T, class... Args>
[[nodiscard]] BlockResult block(timespec* timeout, Args&&... args)
{
T t(forward<Args>(args)...);
ScopedSpinLock lock(m_lock);
// We should never be blocking a blocked (or otherwise non-active) thread.
ASSERT(state() == Thread::Running);
ASSERT(m_blocker == nullptr);
if (t.should_unblock(*this)) {
// Don't block if the wake condition is already met
return BlockResult::NotBlocked;
}
m_blocker = &t;
m_blocker_timeout = t.override_timeout(timeout);
set_state(Thread::Blocked);
// Release our lock
lock.unlock();
// Yield to the scheduler, and wait for us to resume unblocked.
yield_without_holding_big_lock();
// Acquire our lock again
lock.lock();
// We should no longer be blocked once we woke up
ASSERT(state() != Thread::Blocked);
// Remove ourselves...
m_blocker = nullptr;
m_blocker_timeout = nullptr;
// Notify the blocker that we are no longer blocking. It may need
// to clean up now while we're still holding m_lock
t.was_unblocked();
if (t.was_interrupted_by_death())
return BlockResult::InterruptedByDeath;
if (t.was_interrupted_by_signal())
return BlockResult::InterruptedBySignal;
return BlockResult::WokeNormally;
}
[[nodiscard]] BlockResult block_until(const char* state_string, Function<bool()>&& condition)
{
return block<ConditionBlocker>(nullptr, state_string, move(condition));
}
BlockResult wait_on(WaitQueue& queue, const char* reason, timeval* timeout = nullptr, Atomic<bool>* lock = nullptr, Thread* beneficiary = nullptr);
void wake_from_queue();
void unblock();
// Tell this thread to unblock if needed,
// gracefully unwind the stack and die.
void set_should_die();
bool should_die() const { return m_should_die; }
void die_if_needed();
bool tick();
void set_ticks_left(u32 t) { m_ticks_left = t; }
u32 ticks_left() const { return m_ticks_left; }
u32 kernel_stack_base() const { return m_kernel_stack_base; }
u32 kernel_stack_top() const { return m_kernel_stack_top; }
void set_state(State);
bool is_initialized() const { return m_initialized; }
void set_initialized(bool initialized) { m_initialized = initialized; }
void send_urgent_signal_to_self(u8 signal);
void send_signal(u8 signal, Process* sender);
void consider_unblock(time_t now_sec, long now_usec);
u32 update_signal_mask(u32 signal_mask);
u32 signal_mask_block(sigset_t signal_set, bool block);
u32 signal_mask() const;
void clear_signals();
void set_dump_backtrace_on_finalization() { m_dump_backtrace_on_finalization = true; }
ShouldUnblockThread dispatch_one_pending_signal();
ShouldUnblockThread dispatch_signal(u8 signal);
bool has_unmasked_pending_signals() const { return m_have_any_unmasked_pending_signals.load(AK::memory_order_consume); }
void terminate_due_to_signal(u8 signal);
bool should_ignore_signal(u8 signal) const;
bool has_signal_handler(u8 signal) const;
bool has_pending_signal(u8 signal) const;
u32 pending_signals() const;
FPUState& fpu_state() { return *m_fpu_state; }
void set_default_signal_dispositions();
bool push_value_on_stack(FlatPtr);
KResultOr<u32> make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment, Vector<AuxiliaryValue>);
KResult make_thread_specific_region(Badge<Process>);
unsigned syscall_count() const { return m_syscall_count; }
void did_syscall() { ++m_syscall_count; }
unsigned inode_faults() const { return m_inode_faults; }
void did_inode_fault() { ++m_inode_faults; }
unsigned zero_faults() const { return m_zero_faults; }
void did_zero_fault() { ++m_zero_faults; }
unsigned cow_faults() const { return m_cow_faults; }
void did_cow_fault() { ++m_cow_faults; }
unsigned file_read_bytes() const { return m_file_read_bytes; }
unsigned file_write_bytes() const { return m_file_write_bytes; }
void did_file_read(unsigned bytes)
{
m_file_read_bytes += bytes;
}
void did_file_write(unsigned bytes)
{
m_file_write_bytes += bytes;
}
unsigned unix_socket_read_bytes() const { return m_unix_socket_read_bytes; }
unsigned unix_socket_write_bytes() const { return m_unix_socket_write_bytes; }
void did_unix_socket_read(unsigned bytes)
{
m_unix_socket_read_bytes += bytes;
}
void did_unix_socket_write(unsigned bytes)
{
m_unix_socket_write_bytes += bytes;
}
unsigned ipv4_socket_read_bytes() const { return m_ipv4_socket_read_bytes; }
unsigned ipv4_socket_write_bytes() const { return m_ipv4_socket_write_bytes; }
void did_ipv4_socket_read(unsigned bytes)
{
m_ipv4_socket_read_bytes += bytes;
}
void did_ipv4_socket_write(unsigned bytes)
{
m_ipv4_socket_write_bytes += bytes;
}
const char* wait_reason() const
{
return m_wait_reason;
}
void set_active(bool active)
{
m_is_active.store(active, AK::memory_order_release);
}
bool is_finalizable() const
{
// We can't finalize as long as this thread is still running
// Note that checking for Running state here isn't sufficient
// as the thread may not be in Running state but switching out.
// m_is_active is set to false once the context switch is
// complete and the thread is not executing on any processor.
if (m_is_active.load(AK::memory_order_consume))
return false;
// We can't finalize until the thread is either detached or
// a join has started. We can't make m_is_joinable atomic
// because that would introduce a race in try_join.
ScopedSpinLock lock(m_lock);
return !m_is_joinable;
}
Thread* clone(Process&);
template<typename Callback>
static IterationDecision for_each_in_state(State, Callback);
template<typename Callback>
static IterationDecision for_each_living(Callback);
template<typename Callback>
static IterationDecision for_each(Callback);
static bool is_runnable_state(Thread::State state)
{
return state == Thread::State::Running || state == Thread::State::Runnable;
}
static constexpr u32 default_kernel_stack_size = 65536;
static constexpr u32 default_userspace_stack_size = 4 * MiB;
ThreadTracer* tracer() { return m_tracer.ptr(); }
void start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(const RegisterState&);
RecursiveSpinLock& get_lock() const { return m_lock; }
private:
IntrusiveListNode m_runnable_list_node;
IntrusiveListNode m_wait_queue_node;
private:
friend struct SchedulerData;
friend class WaitQueue;
bool unlock_process_if_locked();
void relock_process(bool did_unlock);
String backtrace_impl();
void reset_fpu_state();
mutable RecursiveSpinLock m_lock;
NonnullRefPtr<Process> m_process;
ThreadID m_tid { -1 };
TSS32 m_tss;
Atomic<u32> m_cpu { 0 };
u32 m_cpu_affinity { THREAD_AFFINITY_DEFAULT };
u32 m_ticks { 0 };
u32 m_ticks_left { 0 };
u32 m_times_scheduled { 0 };
u32 m_pending_signals { 0 };
u32 m_signal_mask { 0 };
u32 m_kernel_stack_base { 0 };
u32 m_kernel_stack_top { 0 };
OwnPtr<Region> m_kernel_stack_region;
VirtualAddress m_thread_specific_data;
size_t m_thread_specific_region_size { 0 };
SignalActionData m_signal_action_data[32];
Blocker* m_blocker { nullptr };
timespec* m_blocker_timeout { nullptr };
const char* m_wait_reason { nullptr };
WaitQueue* m_queue { nullptr };
Atomic<bool> m_is_active { false };
bool m_is_joinable { true };
Atomic<Thread*> m_joiner { nullptr };
void* m_exit_value { nullptr };
unsigned m_syscall_count { 0 };
unsigned m_inode_faults { 0 };
unsigned m_zero_faults { 0 };
unsigned m_cow_faults { 0 };
unsigned m_file_read_bytes { 0 };
unsigned m_file_write_bytes { 0 };
unsigned m_unix_socket_read_bytes { 0 };
unsigned m_unix_socket_write_bytes { 0 };
unsigned m_ipv4_socket_read_bytes { 0 };
unsigned m_ipv4_socket_write_bytes { 0 };
FPUState* m_fpu_state { nullptr };
State m_state { Invalid };
String m_name;
u32 m_priority { THREAD_PRIORITY_NORMAL };
u32 m_extra_priority { 0 };
u32 m_priority_boost { 0 };
u8 m_stop_signal { 0 };
State m_stop_state { Invalid };
bool m_dump_backtrace_on_finalization { false };
bool m_should_die { false };
bool m_initialized { false };
Atomic<bool> m_have_any_unmasked_pending_signals { false };
OwnPtr<ThreadTracer> m_tracer;
void yield_without_holding_big_lock();
void update_state_for_thread(Thread::State previous_state);
};
template<typename Callback>
inline IterationDecision Thread::for_each_living(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
return Thread::for_each([callback](Thread& thread) -> IterationDecision {
if (thread.state() != Thread::State::Dead && thread.state() != Thread::State::Dying)
return callback(thread);
return IterationDecision::Continue;
});
}
template<typename Callback>
inline IterationDecision Thread::for_each(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_scheduler_lock);
auto ret = Scheduler::for_each_runnable(callback);
if (ret == IterationDecision::Break)
return ret;
return Scheduler::for_each_nonrunnable(callback);
}
template<typename Callback>
inline IterationDecision Thread::for_each_in_state(State state, Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_scheduler_lock);
auto new_callback = [=](Thread& thread) -> IterationDecision {
if (thread.state() == state)
return callback(thread);
return IterationDecision::Continue;
};
if (is_runnable_state(state))
return Scheduler::for_each_runnable(new_callback);
return Scheduler::for_each_nonrunnable(new_callback);
}
const LogStream& operator<<(const LogStream&, const Thread&);
struct SchedulerData {
typedef IntrusiveList<Thread, &Thread::m_runnable_list_node> ThreadList;
ThreadList m_runnable_threads;
ThreadList m_nonrunnable_threads;
bool has_thread(Thread& thread) const
{
return m_runnable_threads.contains(thread) || m_nonrunnable_threads.contains(thread);
}
ThreadList& thread_list_for_state(Thread::State state)
{
if (Thread::is_runnable_state(state))
return m_runnable_threads;
return m_nonrunnable_threads;
}
};
template<typename Callback>
inline IterationDecision Scheduler::for_each_runnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.own_lock());
auto& tl = g_scheduler_data->m_runnable_threads;
for (auto it = tl.begin(); it != tl.end();) {
auto& thread = *it;
it = ++it;
if (callback(thread) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
inline IterationDecision Scheduler::for_each_nonrunnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.own_lock());
auto& tl = g_scheduler_data->m_nonrunnable_threads;
for (auto it = tl.begin(); it != tl.end();) {
auto& thread = *it;
it = ++it;
if (callback(thread) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
}