mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 07:30:19 +00:00
b8bd667782
This patch adds a header containing the fuzzy match algorithm previously used in Assistant. The algorithm was moved to AK since there are many places where a search may benefit from fuzzyness.
144 lines
5.6 KiB
C++
144 lines
5.6 KiB
C++
/*
|
|
* Copyright (c) 2021, Spencer Dixon <spencercdixon@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/CharacterTypes.h>
|
|
#include <AK/String.h>
|
|
|
|
namespace AK {
|
|
|
|
struct FuzzyMatchResult {
|
|
bool matched { false };
|
|
int score { 0 };
|
|
};
|
|
|
|
static constexpr int const RECURSION_LIMIT = 10;
|
|
static constexpr int const MAX_MATCHES = 256;
|
|
|
|
// Bonuses and penalties are used to build up a final score for the match.
|
|
static constexpr int const SEQUENTIAL_BONUS = 15; // bonus for adjacent matches (needle: 'ca', haystack: 'cat')
|
|
static constexpr int const SEPARATOR_BONUS = 30; // bonus if match occurs after a separator ('_' or ' ')
|
|
static constexpr int const CAMEL_BONUS = 30; // bonus if match is uppercase and prev is lower (needle: 'myF' haystack: '/path/to/myFile.txt')
|
|
static constexpr int const FIRST_LETTER_BONUS = 20; // bonus if the first letter is matched (needle: 'c' haystack: 'cat')
|
|
static constexpr int const LEADING_LETTER_PENALTY = -5; // penalty applied for every letter in str before the first match
|
|
static constexpr int const MAX_LEADING_LETTER_PENALTY = -15; // maximum penalty for leading letters
|
|
static constexpr int const UNMATCHED_LETTER_PENALTY = -1; // penalty for every letter that doesn't matter
|
|
|
|
static int calculate_score(String const& string, u8* index_points, size_t index_points_size)
|
|
{
|
|
int out_score = 100;
|
|
|
|
int penalty = LEADING_LETTER_PENALTY * index_points[0];
|
|
if (penalty < MAX_LEADING_LETTER_PENALTY)
|
|
penalty = MAX_LEADING_LETTER_PENALTY;
|
|
out_score += penalty;
|
|
|
|
int unmatched = string.length() - index_points_size;
|
|
out_score += UNMATCHED_LETTER_PENALTY * unmatched;
|
|
|
|
for (size_t i = 0; i < index_points_size; i++) {
|
|
u8 current_idx = index_points[i];
|
|
|
|
if (current_idx == 0)
|
|
out_score += FIRST_LETTER_BONUS;
|
|
|
|
if (i == 0)
|
|
continue;
|
|
|
|
u8 previous_idx = index_points[i - 1];
|
|
if (current_idx - 1 == previous_idx)
|
|
out_score += SEQUENTIAL_BONUS;
|
|
|
|
u32 current_character = string[current_idx];
|
|
u32 neighbor_character = string[current_idx - 1];
|
|
|
|
if (neighbor_character != to_ascii_uppercase(neighbor_character) && current_character != to_ascii_lowercase(current_character))
|
|
out_score += CAMEL_BONUS;
|
|
|
|
if (neighbor_character == '_' || neighbor_character == ' ')
|
|
out_score += SEPARATOR_BONUS;
|
|
}
|
|
|
|
return out_score;
|
|
}
|
|
|
|
static FuzzyMatchResult fuzzy_match_recursive(String const& needle, String const& haystack, size_t needle_idx, size_t haystack_idx,
|
|
u8 const* src_matches, u8* matches, int next_match, int& recursion_count)
|
|
{
|
|
int out_score = 0;
|
|
|
|
++recursion_count;
|
|
if (recursion_count >= RECURSION_LIMIT)
|
|
return { false, out_score };
|
|
|
|
if (needle.length() == needle_idx || haystack.length() == haystack_idx)
|
|
return { false, out_score };
|
|
|
|
bool had_recursive_match = false;
|
|
constexpr size_t recursive_match_limit = 256;
|
|
u8 best_recursive_matches[recursive_match_limit];
|
|
int best_recursive_score = 0;
|
|
|
|
bool first_match = true;
|
|
while (needle_idx < needle.length() && haystack_idx < haystack.length()) {
|
|
|
|
if (to_ascii_lowercase(needle[needle_idx]) == to_ascii_lowercase(haystack[haystack_idx])) {
|
|
if (next_match >= MAX_MATCHES)
|
|
return { false, out_score };
|
|
|
|
if (first_match && src_matches) {
|
|
memcpy(matches, src_matches, next_match);
|
|
first_match = false;
|
|
}
|
|
|
|
u8 recursive_matches[recursive_match_limit] {};
|
|
auto result = fuzzy_match_recursive(needle, haystack, needle_idx, haystack_idx + 1, matches, recursive_matches, next_match, recursion_count);
|
|
if (result.matched) {
|
|
if (!had_recursive_match || result.score > best_recursive_score) {
|
|
memcpy(best_recursive_matches, recursive_matches, recursive_match_limit);
|
|
best_recursive_score = result.score;
|
|
}
|
|
had_recursive_match = true;
|
|
}
|
|
matches[next_match++] = haystack_idx;
|
|
needle_idx++;
|
|
}
|
|
haystack_idx++;
|
|
}
|
|
|
|
bool matched = needle_idx == needle.length();
|
|
if (!matched)
|
|
return { false, out_score };
|
|
|
|
out_score = calculate_score(haystack, matches, next_match);
|
|
|
|
if (had_recursive_match && (best_recursive_score > out_score)) {
|
|
memcpy(matches, best_recursive_matches, MAX_MATCHES);
|
|
out_score = best_recursive_score;
|
|
}
|
|
|
|
return { true, out_score };
|
|
}
|
|
|
|
// This fuzzy_match algorithm is based off a similar algorithm used by Sublime Text. The key insight is that instead
|
|
// of doing a total in the distance between characters (I.E. Levenshtein Distance), we apply some meaningful heuristics
|
|
// related to our dataset that we're trying to match to build up a score. Scores can then be sorted and displayed
|
|
// with the highest at the top.
|
|
//
|
|
// Scores are not normalized between any values and have no particular meaning. The starting value is 100 and when we
|
|
// detect good indicators of a match we add to the score. When we detect bad indicators, we penalize the match and subtract
|
|
// from its score. Therefore, the longer the needle/haystack the greater the range of scores could be.
|
|
static FuzzyMatchResult fuzzy_match(String const& needle, String const& haystack)
|
|
{
|
|
int recursion_count = 0;
|
|
u8 matches[MAX_MATCHES] {};
|
|
return fuzzy_match_recursive(needle, haystack, 0, 0, nullptr, matches, 0, recursion_count);
|
|
}
|
|
|
|
}
|
|
using AK::fuzzy_match;
|
|
using AK::FuzzyMatchResult;
|