mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 07:30:19 +00:00
6de63782c7
The streaming operator doesn't short-circuit, consider the following snippet: void foo(InputStream& stream) { int a, b; stream >> a >> b; } If the first read fails, the second is called regardless. It should be well defined what happens in this case: nothing.
141 lines
4.1 KiB
C++
141 lines
4.1 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/CircularQueue.h>
|
|
#include <AK/Stream.h>
|
|
|
|
namespace AK {
|
|
|
|
// FIXME: There are a lot of raw loops here, that's not necessary an issue but it
|
|
// has to be verified that the optimizer is able to insert memcpy instead.
|
|
template<size_t Capacity>
|
|
class CircularDuplexStream : public AK::DuplexStream {
|
|
public:
|
|
size_t write(ReadonlyBytes bytes) override
|
|
{
|
|
const auto nwritten = min(bytes.size(), Capacity - m_queue.size());
|
|
|
|
for (size_t idx = 0; idx < nwritten; ++idx)
|
|
m_queue.enqueue(bytes[idx]);
|
|
|
|
m_total_written += nwritten;
|
|
return nwritten;
|
|
}
|
|
|
|
bool write_or_error(ReadonlyBytes bytes) override
|
|
{
|
|
if (Capacity - m_queue.size() < bytes.size()) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
write(bytes);
|
|
return true;
|
|
}
|
|
|
|
size_t read(Bytes bytes) override
|
|
{
|
|
if (has_any_error())
|
|
return 0;
|
|
|
|
const auto nread = min(bytes.size(), m_queue.size());
|
|
|
|
for (size_t idx = 0; idx < nread; ++idx)
|
|
bytes[idx] = m_queue.dequeue();
|
|
|
|
return nread;
|
|
}
|
|
|
|
size_t read(Bytes bytes, size_t seekback)
|
|
{
|
|
if (seekback > Capacity || seekback > m_total_written) {
|
|
set_recoverable_error();
|
|
return 0;
|
|
}
|
|
|
|
const auto nread = min(bytes.size(), seekback);
|
|
|
|
for (size_t idx = 0; idx < nread; ++idx) {
|
|
const auto index = (m_total_written - seekback + idx) % Capacity;
|
|
bytes[idx] = m_queue.m_storage[index];
|
|
}
|
|
|
|
return nread;
|
|
}
|
|
|
|
bool read_or_error(Bytes bytes) override
|
|
{
|
|
if (m_queue.size() < bytes.size()) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
read(bytes);
|
|
return true;
|
|
}
|
|
|
|
bool discard_or_error(size_t count) override
|
|
{
|
|
if (m_queue.size() < count) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
for (size_t idx = 0; idx < count; ++idx)
|
|
m_queue.dequeue();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool eof() const override { return m_queue.size() == 0; }
|
|
|
|
size_t remaining_contigous_space() const
|
|
{
|
|
return min(Capacity - m_queue.size(), m_queue.capacity() - (m_queue.head_index() + m_queue.size()) % Capacity);
|
|
}
|
|
|
|
Bytes reserve_contigous_space(size_t count)
|
|
{
|
|
ASSERT(count <= remaining_contigous_space());
|
|
|
|
Bytes bytes { m_queue.m_storage + (m_queue.head_index() + m_queue.size()) % Capacity, count };
|
|
|
|
m_queue.m_size += count;
|
|
m_total_written += count;
|
|
|
|
return bytes;
|
|
}
|
|
|
|
private:
|
|
CircularQueue<u8, Capacity> m_queue;
|
|
size_t m_total_written { 0 };
|
|
};
|
|
|
|
}
|
|
|
|
using AK::CircularDuplexStream;
|