ladybird/Userland/Libraries/LibGfx/AffineTransform.cpp
Andreas Kling c69b266e43 LibGfx: Add fast path for multiply() with identity transforms
This is a no-op, and exiting early is useful as it cuts time spent in
AffineTransform::multiply() from 3% to 2% when hovering links on
ziglang.org.
2024-03-02 13:00:09 +01:00

251 lines
5.9 KiB
C++

/*
* Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Math.h>
#include <AK/Optional.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Quad.h>
#include <LibGfx/Rect.h>
namespace Gfx {
float AffineTransform::x_scale() const
{
return AK::hypot(m_values[0], m_values[1]);
}
float AffineTransform::y_scale() const
{
return AK::hypot(m_values[2], m_values[3]);
}
FloatPoint AffineTransform::scale() const
{
return { x_scale(), y_scale() };
}
float AffineTransform::x_translation() const
{
return e();
}
float AffineTransform::y_translation() const
{
return f();
}
FloatPoint AffineTransform::translation() const
{
return { x_translation(), y_translation() };
}
AffineTransform& AffineTransform::scale(float sx, float sy)
{
m_values[0] *= sx;
m_values[1] *= sx;
m_values[2] *= sy;
m_values[3] *= sy;
return *this;
}
AffineTransform& AffineTransform::scale(FloatPoint s)
{
return scale(s.x(), s.y());
}
AffineTransform& AffineTransform::set_scale(float sx, float sy)
{
m_values[0] = sx;
m_values[1] = 0;
m_values[2] = 0;
m_values[3] = sy;
return *this;
}
AffineTransform& AffineTransform::set_scale(FloatPoint s)
{
return set_scale(s.x(), s.y());
}
AffineTransform& AffineTransform::skew_radians(float x_radians, float y_radians)
{
AffineTransform skew_transform(1, AK::tan(y_radians), AK::tan(x_radians), 1, 0, 0);
multiply(skew_transform);
return *this;
}
AffineTransform& AffineTransform::translate(float tx, float ty)
{
if (is_identity_or_translation()) {
m_values[4] += tx;
m_values[5] += ty;
return *this;
}
m_values[4] += tx * m_values[0] + ty * m_values[2];
m_values[5] += tx * m_values[1] + ty * m_values[3];
return *this;
}
AffineTransform& AffineTransform::translate(FloatPoint t)
{
return translate(t.x(), t.y());
}
AffineTransform& AffineTransform::set_translation(float tx, float ty)
{
m_values[4] = tx;
m_values[5] = ty;
return *this;
}
AffineTransform& AffineTransform::set_translation(FloatPoint t)
{
return set_translation(t.x(), t.y());
}
AffineTransform& AffineTransform::multiply(AffineTransform const& other)
{
if (other.is_identity())
return *this;
AffineTransform result;
result.m_values[0] = other.a() * a() + other.b() * c();
result.m_values[1] = other.a() * b() + other.b() * d();
result.m_values[2] = other.c() * a() + other.d() * c();
result.m_values[3] = other.c() * b() + other.d() * d();
result.m_values[4] = other.e() * a() + other.f() * c() + e();
result.m_values[5] = other.e() * b() + other.f() * d() + f();
*this = result;
return *this;
}
AffineTransform& AffineTransform::rotate_radians(float radians)
{
float sin_angle;
float cos_angle;
AK::sincos(radians, sin_angle, cos_angle);
AffineTransform rotation(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0);
multiply(rotation);
return *this;
}
float AffineTransform::determinant() const
{
return a() * d() - b() * c();
}
Optional<AffineTransform> AffineTransform::inverse() const
{
auto det = determinant();
if (det == 0)
return {};
return AffineTransform {
d() / det,
-b() / det,
-c() / det,
a() / det,
(c() * f() - d() * e()) / det,
(b() * e() - a() * f()) / det,
};
}
void AffineTransform::map(float unmapped_x, float unmapped_y, float& mapped_x, float& mapped_y) const
{
mapped_x = a() * unmapped_x + c() * unmapped_y + e();
mapped_y = b() * unmapped_x + d() * unmapped_y + f();
}
template<>
IntPoint AffineTransform::map(IntPoint point) const
{
float mapped_x;
float mapped_y;
map(static_cast<float>(point.x()), static_cast<float>(point.y()), mapped_x, mapped_y);
return { round_to<int>(mapped_x), round_to<int>(mapped_y) };
}
template<>
FloatPoint AffineTransform::map(FloatPoint point) const
{
float mapped_x;
float mapped_y;
map(point.x(), point.y(), mapped_x, mapped_y);
return { mapped_x, mapped_y };
}
template<>
IntSize AffineTransform::map(IntSize size) const
{
return {
round_to<int>(static_cast<float>(size.width()) * x_scale()),
round_to<int>(static_cast<float>(size.height()) * y_scale()),
};
}
template<>
FloatSize AffineTransform::map(FloatSize size) const
{
return { size.width() * x_scale(), size.height() * y_scale() };
}
template<typename T>
static T smallest_of(T p1, T p2, T p3, T p4)
{
return min(min(p1, p2), min(p3, p4));
}
template<typename T>
static T largest_of(T p1, T p2, T p3, T p4)
{
return max(max(p1, p2), max(p3, p4));
}
template<>
FloatRect AffineTransform::map(FloatRect const& rect) const
{
if (is_identity()) {
return rect;
}
if (is_identity_or_translation()) {
return rect.translated(e(), f());
}
FloatPoint p1 = map(rect.top_left());
FloatPoint p2 = map(rect.top_right());
FloatPoint p3 = map(rect.bottom_right());
FloatPoint p4 = map(rect.bottom_left());
float left = smallest_of(p1.x(), p2.x(), p3.x(), p4.x());
float top = smallest_of(p1.y(), p2.y(), p3.y(), p4.y());
float right = largest_of(p1.x(), p2.x(), p3.x(), p4.x());
float bottom = largest_of(p1.y(), p2.y(), p3.y(), p4.y());
return { left, top, right - left, bottom - top };
}
template<>
IntRect AffineTransform::map(IntRect const& rect) const
{
return enclosing_int_rect(map(FloatRect(rect)));
}
Quad<float> AffineTransform::map_to_quad(Rect<float> const& rect) const
{
return {
map(rect.top_left()),
map(rect.top_right()),
map(rect.bottom_right()),
map(rect.bottom_left()),
};
}
float AffineTransform::rotation() const
{
auto rotation = AK::atan2(b(), a());
while (rotation < -AK::Pi<float>)
rotation += 2.0f * AK::Pi<float>;
while (rotation > AK::Pi<float>)
rotation -= 2.0f * AK::Pi<float>;
return rotation;
}
}