mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-12-01 12:00:27 +00:00
367 lines
10 KiB
C++
367 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/ByteBuffer.h>
|
|
#include <AK/MemMem.h>
|
|
#include <AK/Stream.h>
|
|
#include <AK/Vector.h>
|
|
|
|
namespace AK {
|
|
|
|
class InputMemoryStream final : public InputStream {
|
|
public:
|
|
explicit InputMemoryStream(ReadonlyBytes bytes)
|
|
: m_bytes(bytes)
|
|
{
|
|
}
|
|
|
|
bool unreliable_eof() const override { return eof(); }
|
|
bool eof() const { return m_offset >= m_bytes.size(); }
|
|
|
|
size_t read(Bytes bytes) override
|
|
{
|
|
if (has_any_error())
|
|
return 0;
|
|
|
|
const auto count = min(bytes.size(), remaining());
|
|
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, count);
|
|
m_offset += count;
|
|
return count;
|
|
}
|
|
|
|
bool read_or_error(Bytes bytes) override
|
|
{
|
|
if (remaining() < bytes.size()) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
__builtin_memcpy(bytes.data(), m_bytes.data() + m_offset, bytes.size());
|
|
m_offset += bytes.size();
|
|
return true;
|
|
}
|
|
|
|
bool discard_or_error(size_t count) override
|
|
{
|
|
if (remaining() < count) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
m_offset += count;
|
|
return true;
|
|
}
|
|
|
|
void seek(size_t offset)
|
|
{
|
|
ASSERT(offset < m_bytes.size());
|
|
m_offset = offset;
|
|
}
|
|
|
|
u8 peek_or_error() const
|
|
{
|
|
if (remaining() == 0) {
|
|
set_recoverable_error();
|
|
return 0;
|
|
}
|
|
|
|
return m_bytes[m_offset];
|
|
}
|
|
|
|
bool read_LEB128_unsigned(size_t& result)
|
|
{
|
|
const auto backup = m_offset;
|
|
|
|
result = 0;
|
|
size_t num_bytes = 0;
|
|
while (true) {
|
|
if (eof()) {
|
|
m_offset = backup;
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
const u8 byte = m_bytes[m_offset];
|
|
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
|
|
++m_offset;
|
|
if (!(byte & (1 << 7)))
|
|
break;
|
|
++num_bytes;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool read_LEB128_signed(ssize_t& result)
|
|
{
|
|
const auto backup = m_offset;
|
|
|
|
result = 0;
|
|
size_t num_bytes = 0;
|
|
u8 byte = 0;
|
|
|
|
do {
|
|
if (eof()) {
|
|
m_offset = backup;
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
byte = m_bytes[m_offset];
|
|
result = (result) | (static_cast<size_t>(byte & ~(1 << 7)) << (num_bytes * 7));
|
|
++m_offset;
|
|
++num_bytes;
|
|
} while (byte & (1 << 7));
|
|
|
|
if (num_bytes * 7 < sizeof(size_t) * 4 && (byte & 0x40)) {
|
|
// sign extend
|
|
result |= ((size_t)(-1) << (num_bytes * 7));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ReadonlyBytes bytes() const { return m_bytes; }
|
|
size_t offset() const { return m_offset; }
|
|
size_t remaining() const { return m_bytes.size() - m_offset; }
|
|
|
|
private:
|
|
ReadonlyBytes m_bytes;
|
|
size_t m_offset { 0 };
|
|
};
|
|
|
|
class OutputMemoryStream final : public OutputStream {
|
|
public:
|
|
explicit OutputMemoryStream(Bytes bytes)
|
|
: m_bytes(bytes)
|
|
{
|
|
}
|
|
|
|
size_t write(ReadonlyBytes bytes) override
|
|
{
|
|
const auto nwritten = bytes.copy_trimmed_to(m_bytes.slice(m_offset));
|
|
m_offset += nwritten;
|
|
return nwritten;
|
|
}
|
|
|
|
bool write_or_error(ReadonlyBytes bytes) override
|
|
{
|
|
if (remaining() < bytes.size()) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
write(bytes);
|
|
return true;
|
|
}
|
|
|
|
size_t fill_to_end(u8 value)
|
|
{
|
|
const auto nwritten = m_bytes.slice(m_offset).fill(value);
|
|
m_offset += nwritten;
|
|
return nwritten;
|
|
}
|
|
|
|
bool is_end() const { return remaining() == 0; }
|
|
|
|
ReadonlyBytes bytes() const { return { data(), size() }; }
|
|
Bytes bytes() { return { data(), size() }; }
|
|
|
|
const u8* data() const { return m_bytes.data(); }
|
|
u8* data() { return m_bytes.data(); }
|
|
|
|
size_t size() const { return m_offset; }
|
|
size_t remaining() const { return m_bytes.size() - m_offset; }
|
|
|
|
private:
|
|
size_t m_offset { 0 };
|
|
Bytes m_bytes;
|
|
};
|
|
|
|
class DuplexMemoryStream final : public DuplexStream {
|
|
public:
|
|
static constexpr size_t chunk_size = 4 * 1024;
|
|
|
|
bool unreliable_eof() const override { return eof(); }
|
|
bool eof() const { return m_write_offset == m_read_offset; }
|
|
|
|
bool discard_or_error(size_t count) override
|
|
{
|
|
if (m_write_offset - m_read_offset < count) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
m_read_offset += count;
|
|
try_discard_chunks();
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Does not read across chunk boundaries
|
|
// Perhaps implement AK::memmem() for iterators?
|
|
Optional<size_t> offset_of(ReadonlyBytes value) const
|
|
{
|
|
if (value.size() > size())
|
|
return {};
|
|
|
|
// First, find which chunk we're in.
|
|
auto chunk_index = min((m_read_offset - m_base_offset) / chunk_size, m_chunks.size() - 1);
|
|
auto last_written_chunk_index = (m_write_offset - m_base_offset) / chunk_size;
|
|
auto first_chunk_index = chunk_index;
|
|
auto last_written_chunk_offset = m_write_offset % chunk_size;
|
|
auto first_chunk_offset = m_read_offset % chunk_size;
|
|
size_t last_chunk_offset = 0;
|
|
auto found_value = false;
|
|
auto chunk_index_max_bound = last_written_chunk_offset > 0 ? last_written_chunk_index + 1 : last_written_chunk_index;
|
|
|
|
for (; chunk_index < chunk_index_max_bound; ++chunk_index) {
|
|
auto& chunk = m_chunks[chunk_index];
|
|
auto chunk_bytes = chunk.bytes();
|
|
size_t chunk_offset = 0;
|
|
if (chunk_index == last_written_chunk_index) {
|
|
chunk_bytes = chunk_bytes.slice(0, last_written_chunk_offset);
|
|
}
|
|
if (chunk_index == first_chunk_index) {
|
|
chunk_bytes = chunk_bytes.slice(first_chunk_offset);
|
|
chunk_offset = first_chunk_offset;
|
|
}
|
|
|
|
// See if 'value' is in this chunk,
|
|
auto position = AK::memmem(chunk_bytes.data(), chunk_bytes.size(), value.data(), value.size());
|
|
if (!position)
|
|
continue; // Not in this chunk either :(
|
|
|
|
// We found it!
|
|
found_value = true;
|
|
last_chunk_offset = (const u8*)position - chunk_bytes.data() + chunk_offset;
|
|
break;
|
|
}
|
|
|
|
if (found_value) {
|
|
if (first_chunk_index == chunk_index)
|
|
return last_chunk_offset - first_chunk_offset;
|
|
|
|
return (chunk_index - first_chunk_index) * chunk_size + last_chunk_offset - first_chunk_offset;
|
|
}
|
|
|
|
// No dice.
|
|
return {};
|
|
}
|
|
|
|
size_t read_without_consuming(Bytes bytes) const
|
|
{
|
|
size_t nread = 0;
|
|
while (bytes.size() - nread > 0 && m_write_offset - m_read_offset - nread > 0) {
|
|
const auto chunk_index = (m_read_offset - m_base_offset + nread) / chunk_size;
|
|
const auto chunk_bytes = m_chunks[chunk_index].bytes().slice(m_read_offset % chunk_size).trim(m_write_offset - m_read_offset - nread);
|
|
nread += chunk_bytes.copy_trimmed_to(bytes.slice(nread));
|
|
}
|
|
|
|
return nread;
|
|
}
|
|
|
|
size_t read(Bytes bytes) override
|
|
{
|
|
if (has_any_error())
|
|
return 0;
|
|
|
|
const auto nread = read_without_consuming(bytes);
|
|
|
|
m_read_offset += nread;
|
|
try_discard_chunks();
|
|
|
|
return nread;
|
|
}
|
|
|
|
bool read_or_error(Bytes bytes) override
|
|
{
|
|
if (m_write_offset - m_read_offset < bytes.size()) {
|
|
set_recoverable_error();
|
|
return false;
|
|
}
|
|
|
|
read(bytes);
|
|
return true;
|
|
}
|
|
|
|
size_t write(ReadonlyBytes bytes) override
|
|
{
|
|
size_t nwritten = 0;
|
|
while (bytes.size() - nwritten > 0) {
|
|
if ((m_write_offset + nwritten) % chunk_size == 0)
|
|
m_chunks.append(ByteBuffer::create_uninitialized(chunk_size));
|
|
|
|
nwritten += bytes.copy_trimmed_to(m_chunks.last().bytes().slice(m_write_offset % chunk_size));
|
|
}
|
|
|
|
m_write_offset += nwritten;
|
|
return nwritten;
|
|
}
|
|
|
|
bool write_or_error(ReadonlyBytes bytes) override
|
|
{
|
|
write(bytes);
|
|
return true;
|
|
}
|
|
|
|
ByteBuffer copy_into_contiguous_buffer() const
|
|
{
|
|
auto buffer = ByteBuffer::create_uninitialized(size());
|
|
|
|
const auto nread = read_without_consuming(buffer);
|
|
ASSERT(nread == buffer.size());
|
|
|
|
return buffer;
|
|
}
|
|
|
|
size_t roffset() const { return m_read_offset; }
|
|
size_t woffset() const { return m_write_offset; }
|
|
|
|
size_t size() const { return m_write_offset - m_read_offset; }
|
|
|
|
private:
|
|
void try_discard_chunks()
|
|
{
|
|
while (m_read_offset - m_base_offset >= chunk_size) {
|
|
m_chunks.take_first();
|
|
m_base_offset += chunk_size;
|
|
}
|
|
}
|
|
|
|
Vector<ByteBuffer> m_chunks;
|
|
size_t m_write_offset { 0 };
|
|
size_t m_read_offset { 0 };
|
|
size_t m_base_offset { 0 };
|
|
};
|
|
|
|
}
|
|
|
|
using AK::DuplexMemoryStream;
|
|
using AK::InputMemoryStream;
|
|
using AK::InputStream;
|
|
using AK::OutputMemoryStream;
|