mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-21 23:20:20 +00:00
67b0d04315
Picking the first and last elements as pivots makes it so that a sorted array is the worst-case input for the algorithm. This change instead picks pivots at approximately 1/3 and 2/3 in the array. This results in desired performance for sorted arrays. Of course this only changes which inputs result in worst-case performance, but hopefully those inputs occur less frequently than already sorted arrays.
141 lines
3.7 KiB
C++
141 lines
3.7 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/StdLibExtras.h>
|
|
|
|
namespace AK {
|
|
|
|
/* This is a dual pivot quick sort. It is quite a bit faster than the single
|
|
* pivot quick_sort below. The other quick_sort below should only be used when
|
|
* you are stuck with simple iterators to a container and you don't have access
|
|
* to the container itself.
|
|
*/
|
|
template<typename Collection, typename LessThan>
|
|
void dual_pivot_quick_sort(Collection& col, int start, int end, LessThan less_than)
|
|
{
|
|
int size = end - start + 1;
|
|
if (size <= 1) {
|
|
return;
|
|
}
|
|
|
|
if (size > 3) {
|
|
int third = size / 3;
|
|
if (less_than(col[start + third], col[end - third])) {
|
|
swap(col[start + third], col[start]);
|
|
swap(col[end - third], col[end]);
|
|
} else {
|
|
swap(col[start + third], col[end]);
|
|
swap(col[end - third], col[start]);
|
|
}
|
|
} else {
|
|
if (!less_than(col[start], col[end])) {
|
|
swap(col[start], col[end]);
|
|
}
|
|
}
|
|
|
|
int j = start + 1;
|
|
int k = start + 1;
|
|
int g = end - 1;
|
|
|
|
auto&& left_pivot = col[start];
|
|
auto&& right_pivot = col[end];
|
|
|
|
while (k <= g) {
|
|
if (less_than(col[k], left_pivot)) {
|
|
swap(col[k], col[j]);
|
|
j++;
|
|
} else if (!less_than(col[k], right_pivot)) {
|
|
while (!less_than(col[g], right_pivot) && k < g) {
|
|
g--;
|
|
}
|
|
swap(col[k], col[g]);
|
|
g--;
|
|
if (less_than(col[k], left_pivot)) {
|
|
swap(col[k], col[j]);
|
|
j++;
|
|
}
|
|
}
|
|
k++;
|
|
}
|
|
j--;
|
|
g++;
|
|
|
|
swap(col[start], col[j]);
|
|
swap(col[end], col[g]);
|
|
|
|
int left_pointer = j;
|
|
int right_pointer = g;
|
|
|
|
dual_pivot_quick_sort(col, start, left_pointer - 1, less_than);
|
|
dual_pivot_quick_sort(col, left_pointer + 1, right_pointer - 1, less_than);
|
|
dual_pivot_quick_sort(col, right_pointer + 1, end, less_than);
|
|
}
|
|
|
|
template<typename Iterator, typename LessThan>
|
|
void single_pivot_quick_sort(Iterator start, Iterator end, LessThan less_than)
|
|
{
|
|
for (;;) {
|
|
int size = end - start;
|
|
if (size <= 1)
|
|
return;
|
|
|
|
int pivot_point = size / 2;
|
|
if (pivot_point)
|
|
swap(*(start + pivot_point), *start);
|
|
|
|
auto&& pivot = *start;
|
|
|
|
int i = 1;
|
|
for (int j = 1; j < size; ++j) {
|
|
if (less_than(*(start + j), pivot)) {
|
|
swap(*(start + j), *(start + i));
|
|
++i;
|
|
}
|
|
}
|
|
|
|
swap(*start, *(start + i - 1));
|
|
// Recur into the shorter part of the remaining data
|
|
// to ensure a stack depth of at most log(n).
|
|
if (i > size / 2) {
|
|
single_pivot_quick_sort(start + i, end, less_than);
|
|
end = start + i - 1;
|
|
} else {
|
|
single_pivot_quick_sort(start, start + i - 1, less_than);
|
|
start = start + i;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename Iterator>
|
|
void quick_sort(Iterator start, Iterator end)
|
|
{
|
|
single_pivot_quick_sort(start, end, [](auto& a, auto& b) { return a < b; });
|
|
}
|
|
|
|
template<typename Iterator, typename LessThan>
|
|
void quick_sort(Iterator start, Iterator end, LessThan less_than)
|
|
{
|
|
single_pivot_quick_sort(start, end, move(less_than));
|
|
}
|
|
|
|
template<typename Collection, typename LessThan>
|
|
void quick_sort(Collection& collection, LessThan less_than)
|
|
{
|
|
dual_pivot_quick_sort(collection, 0, collection.size() - 1, move(less_than));
|
|
}
|
|
|
|
template<typename Collection>
|
|
void quick_sort(Collection& collection)
|
|
{
|
|
dual_pivot_quick_sort(collection, 0, collection.size() - 1,
|
|
[](auto& a, auto& b) { return a < b; });
|
|
}
|
|
|
|
}
|
|
|
|
using AK::quick_sort;
|