ladybird/Kernel/Scheduler.cpp
Andreas Kling 647cfcb641 Kernel: Prune uninteresting kernel frames from profiling samples
Start capturing the sample stacks at the EIP/EBP of the pre-empted
thread instead of capturing EBP in the sampling function itself.
2021-01-17 14:36:53 +01:00

556 lines
20 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Debug.h>
#include <AK/QuickSort.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
//#define SCHEDULER_RUNNABLE_DEBUG
namespace Kernel {
class SchedulerPerProcessorData {
AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData);
AK_MAKE_NONMOVABLE(SchedulerPerProcessorData);
public:
SchedulerPerProcessorData() = default;
WeakPtr<Thread> m_pending_beneficiary;
const char* m_pending_donate_reason { nullptr };
bool m_in_scheduler { true };
};
SchedulerData* g_scheduler_data;
RecursiveSpinLock g_scheduler_lock;
void Scheduler::init_thread(Thread& thread)
{
ASSERT(g_scheduler_data);
g_scheduler_data->m_nonrunnable_threads.append(thread);
}
static u32 time_slice_for(const Thread& thread)
{
// One time slice unit == 4ms (assuming 250 ticks/second)
if (&thread == Processor::current().idle_thread())
return 1;
return 2;
}
Thread* g_finalizer;
WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work { false };
static Process* s_colonel_process;
void Scheduler::start()
{
ASSERT_INTERRUPTS_DISABLED();
// We need to acquire our scheduler lock, which will be released
// by the idle thread once control transferred there
g_scheduler_lock.lock();
auto& processor = Processor::current();
processor.set_scheduler_data(*new SchedulerPerProcessorData());
ASSERT(processor.is_initialized());
auto& idle_thread = *processor.idle_thread();
ASSERT(processor.current_thread() == &idle_thread);
ASSERT(processor.idle_thread() == &idle_thread);
idle_thread.set_ticks_left(time_slice_for(idle_thread));
idle_thread.did_schedule();
idle_thread.set_initialized(true);
processor.init_context(idle_thread, false);
idle_thread.set_state(Thread::Running);
ASSERT(idle_thread.affinity() == (1u << processor.id()));
processor.initialize_context_switching(idle_thread);
ASSERT_NOT_REACHED();
}
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
auto current_thread = Thread::current();
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
auto& scheduler_data = Processor::current().get_scheduler_data();
scheduler_data.m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
ScopedSpinLock lock(g_scheduler_lock);
if (current_thread->should_die() && current_thread->state() == Thread::Running) {
// Rather than immediately killing threads, yanking the kernel stack
// away from them (which can lead to e.g. reference leaks), we always
// allow Thread::wait_on to return. This allows the kernel stack to
// clean up and eventually we'll get here shortly before transitioning
// back to user mode (from Processor::exit_trap). At this point we
// no longer want to schedule this thread. We can't wait until
// Scheduler::enter_current because we don't want to allow it to
// transition back to user mode.
if constexpr (debug_scheduler)
dbgln("Scheduler[{}]: Thread {} is dying", Processor::current().id(), *current_thread);
current_thread->set_state(Thread::Dying);
}
if constexpr (debug_scheduler_runnable) {
dbgln("Scheduler[{}j]: Non-runnables:", Processor::current().id());
Scheduler::for_each_nonrunnable([&](Thread& thread) -> IterationDecision {
if (thread.state() == Thread::Dying) {
dbgln(" {:12} {} @ {:04x}:{:08x} Finalizable: {}",
thread.state_string(),
thread,
thread.tss().cs,
thread.tss().eip,
thread.is_finalizable());
} else {
dbgln(" {:12} {} @ {:04x}:{:08x}",
thread.state_string(),
thread,
thread.tss().cs,
thread.tss().eip);
}
return IterationDecision::Continue;
});
dbgln("Scheduler[{}j]: Runnables:", Processor::current().id());
Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
dbgln(" {:3}/{:2} {:12} @ {:04x}:{:08x}",
thread.effective_priority(),
thread.priority(),
thread.state_string(),
thread.tss().cs,
thread.tss().eip);
return IterationDecision::Continue;
});
}
Thread* thread_to_schedule = nullptr;
auto pending_beneficiary = scheduler_data.m_pending_beneficiary.strong_ref();
Vector<Thread*, 128> sorted_runnables;
for_each_runnable([&](auto& thread) {
if ((thread.affinity() & (1u << Processor::current().id())) == 0)
return IterationDecision::Continue;
if (thread.state() == Thread::Running && &thread != current_thread)
return IterationDecision::Continue;
sorted_runnables.append(&thread);
if (&thread == pending_beneficiary) {
thread_to_schedule = &thread;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (thread_to_schedule) {
// The thread we're supposed to donate to still exists
const char* reason = scheduler_data.m_pending_donate_reason;
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
dbgln<debug_scheduler>("Processing pending donate to {} reason={}", *thread_to_schedule, reason);
return donate_to_and_switch(thread_to_schedule, reason);
}
// Either we're not donating or the beneficiary disappeared.
// Either way clear any pending information
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
for (auto* thread : sorted_runnables) {
if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
continue;
ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
if (!thread_to_schedule) {
thread->m_extra_priority = 0;
thread_to_schedule = thread;
} else {
thread->m_extra_priority++;
}
}
if (!thread_to_schedule)
thread_to_schedule = Processor::current().idle_thread();
if constexpr (debug_scheduler) {
dbgln("Scheduler[{}]: Switch to {} @ {:04x}:{:08x}",
Processor::current().id(),
*thread_to_schedule,
thread_to_schedule->tss().cs, thread_to_schedule->tss().eip);
}
// We need to leave our first critical section before switching context,
// but since we're still holding the scheduler lock we're still in a critical section
critical.leave();
thread_to_schedule->set_ticks_left(time_slice_for(*thread_to_schedule));
return context_switch(thread_to_schedule);
}
bool Scheduler::yield()
{
InterruptDisabler disabler;
auto& proc = Processor::current();
auto& scheduler_data = proc.get_scheduler_data();
// Clear any pending beneficiary
scheduler_data.m_pending_beneficiary = nullptr;
scheduler_data.m_pending_donate_reason = nullptr;
auto current_thread = Thread::current();
dbgln<debug_scheduler>("Scheduler[{}]: yielding thread {} in_irq={}", proc.id(), *current_thread, proc.in_irq());
ASSERT(current_thread != nullptr);
if (proc.in_irq() || proc.in_critical()) {
// If we're handling an IRQ we can't switch context, or we're in
// a critical section where we don't want to switch contexts, then
// delay until exiting the trap or critical section
proc.invoke_scheduler_async();
return false;
}
if (!Scheduler::pick_next())
return false;
if constexpr (debug_scheduler)
dbgln("Scheduler[{}]: yield returns to thread {} in_irq={}", Processor::current().id(), *current_thread, Processor::current().in_irq());
return true;
}
bool Scheduler::donate_to_and_switch(Thread* beneficiary, [[maybe_unused]] const char* reason)
{
ASSERT(g_scheduler_lock.own_lock());
auto& proc = Processor::current();
ASSERT(proc.in_critical() == 1);
unsigned ticks_left = Thread::current()->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return Scheduler::yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
dbgln<debug_scheduler>("Scheduler[{}]: Donating {} ticks to {}, reason={}", proc.id(), ticks_to_donate, *beneficiary, reason);
beneficiary->set_ticks_left(ticks_to_donate);
return Scheduler::context_switch(beneficiary);
}
bool Scheduler::donate_to(RefPtr<Thread>& beneficiary, const char* reason)
{
ASSERT(beneficiary);
if (beneficiary == Thread::current())
return Scheduler::yield();
// Set the m_in_scheduler flag before acquiring the spinlock. This
// prevents a recursive call into Scheduler::invoke_async upon
// leaving the scheduler lock.
ScopedCritical critical;
auto& proc = Processor::current();
auto& scheduler_data = proc.get_scheduler_data();
scheduler_data.m_in_scheduler = true;
ScopeGuard guard(
[]() {
// We may be on a different processor after we got switched
// back to this thread!
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
});
ASSERT(!proc.in_irq());
if (proc.in_critical() > 1) {
scheduler_data.m_pending_beneficiary = beneficiary; // Save the beneficiary
scheduler_data.m_pending_donate_reason = reason;
proc.invoke_scheduler_async();
return false;
}
ScopedSpinLock lock(g_scheduler_lock);
// "Leave" the critical section before switching context. Since we
// still hold the scheduler lock, we're not actually leaving it.
// Processor::switch_context expects Processor::in_critical() to be 1
critical.leave();
donate_to_and_switch(beneficiary, reason);
return false;
}
bool Scheduler::context_switch(Thread* thread)
{
thread->did_schedule();
auto from_thread = Thread::current();
if (from_thread == thread)
return false;
if (from_thread) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (from_thread->state() == Thread::Running)
from_thread->set_state(Thread::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbgln("Scheduler[{}]: {} -> {} [prio={}] {:04x}:{:08x}", Processor::current().id(), from_thread->tid().value(), thread->tid().value(), thread->priority(), thread->tss().cs, thread->tss().eip);
#endif
}
auto& proc = Processor::current();
if (!thread->is_initialized()) {
proc.init_context(*thread, false);
thread->set_initialized(true);
}
thread->set_state(Thread::Running);
// Mark it as active because we are using this thread. This is similar
// to comparing it with Processor::current_thread, but when there are
// multiple processors there's no easy way to check whether the thread
// is actually still needed. This prevents accidental finalization when
// a thread is no longer in Running state, but running on another core.
thread->set_active(true);
proc.switch_context(from_thread, thread);
// NOTE: from_thread at this point reflects the thread we were
// switched from, and thread reflects Thread::current()
enter_current(*from_thread, false);
ASSERT(thread == Thread::current());
#if ARCH(I386)
auto iopl = get_iopl_from_eflags(Thread::current()->get_register_dump_from_stack().eflags);
if (thread->process().is_user_process() && iopl != 0) {
dbgln("PANIC: Switched to thread {} with non-zero IOPL={}", Thread::current()->tid().value(), iopl);
Processor::halt();
}
#endif
return true;
}
void Scheduler::enter_current(Thread& prev_thread, bool is_first)
{
ASSERT(g_scheduler_lock.own_lock());
prev_thread.set_active(false);
if (prev_thread.state() == Thread::Dying) {
// If the thread we switched from is marked as dying, then notify
// the finalizer. Note that as soon as we leave the scheduler lock
// the finalizer may free from_thread!
notify_finalizer();
} else if (!is_first) {
// Check if we have any signals we should deliver (even if we don't
// end up switching to another thread).
auto current_thread = Thread::current();
if (!current_thread->is_in_block()) {
ScopedSpinLock lock(current_thread->get_lock());
if (current_thread->state() == Thread::Running && current_thread->pending_signals_for_state()) {
current_thread->dispatch_one_pending_signal();
}
}
}
}
void Scheduler::leave_on_first_switch(u32 flags)
{
// This is called when a thread is switched into for the first time.
// At this point, enter_current has already be called, but because
// Scheduler::context_switch is not in the call stack we need to
// clean up and release locks manually here
g_scheduler_lock.unlock(flags);
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = false;
}
void Scheduler::prepare_after_exec()
{
// This is called after exec() when doing a context "switch" into
// the new process. This is called from Processor::assume_context
ASSERT(g_scheduler_lock.own_lock());
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
void Scheduler::prepare_for_idle_loop()
{
// This is called when the CPU finished setting up the idle loop
// and is about to run it. We need to acquire he scheduler lock
ASSERT(!g_scheduler_lock.own_lock());
g_scheduler_lock.lock();
auto& scheduler_data = Processor::current().get_scheduler_data();
ASSERT(!scheduler_data.m_in_scheduler);
scheduler_data.m_in_scheduler = true;
}
Process* Scheduler::colonel()
{
ASSERT(s_colonel_process);
return s_colonel_process;
}
void Scheduler::initialize()
{
ASSERT(&Processor::current() != nullptr); // sanity check
RefPtr<Thread> idle_thread;
g_scheduler_data = new SchedulerData;
g_finalizer_wait_queue = new WaitQueue;
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1).leak_ref();
ASSERT(s_colonel_process);
ASSERT(idle_thread);
idle_thread->set_priority(THREAD_PRIORITY_MIN);
idle_thread->set_name(StringView("idle thread #0"));
set_idle_thread(idle_thread);
}
void Scheduler::set_idle_thread(Thread* idle_thread)
{
Processor::current().set_idle_thread(*idle_thread);
Processor::current().set_current_thread(*idle_thread);
}
Thread* Scheduler::create_ap_idle_thread(u32 cpu)
{
ASSERT(cpu != 0);
// This function is called on the bsp, but creates an idle thread for another AP
ASSERT(Processor::current().id() == 0);
ASSERT(s_colonel_process);
Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, String::format("idle thread #%u", cpu), 1 << cpu, false);
ASSERT(idle_thread);
return idle_thread;
}
void Scheduler::timer_tick(const RegisterState& regs)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
auto current_thread = Processor::current().current_thread();
if (!current_thread)
return;
bool is_bsp = Processor::current().id() == 0;
if (!is_bsp)
return; // TODO: This prevents scheduling on other CPUs!
if (current_thread->process().is_profiling()) {
ASSERT(current_thread->process().perf_events());
auto& perf_events = *current_thread->process().perf_events();
[[maybe_unused]] auto rc = perf_events.append_with_eip_and_ebp(regs.eip, regs.ebp, PERF_EVENT_SAMPLE, 0, 0);
}
if (current_thread->tick((regs.cs & 3) == 0))
return;
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
Processor::current().invoke_scheduler_async();
}
void Scheduler::invoke_async()
{
ASSERT_INTERRUPTS_DISABLED();
auto& proc = Processor::current();
ASSERT(!proc.in_irq());
// Since this function is called when leaving critical sections (such
// as a SpinLock), we need to check if we're not already doing this
// to prevent recursion
if (!proc.get_scheduler_data().m_in_scheduler)
pick_next();
}
void Scheduler::yield_from_critical()
{
auto& proc = Processor::current();
ASSERT(proc.in_critical());
ASSERT(!proc.in_irq());
yield(); // Flag a context switch
u32 prev_flags;
u32 prev_crit = Processor::current().clear_critical(prev_flags, false);
// Note, we may now be on a different CPU!
Processor::current().restore_critical(prev_crit, prev_flags);
}
void Scheduler::notify_finalizer()
{
if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false)
g_finalizer_wait_queue->wake_all();
}
void Scheduler::idle_loop(void*)
{
dbgln("Scheduler[{}]: idle loop running", Processor::current().id());
ASSERT(are_interrupts_enabled());
for (;;) {
asm("hlt");
if (Processor::current().id() == 0)
yield();
}
}
}