ladybird/Kernel/Arch/init.cpp
Sönke Holz 173a085e48 Kernel: Only unmap prekernel on x86_64
Other arches don't use the prekernel, so don't try to unmap it on
non-x86 platforms.
For some reason, this didn't cause aarch64 to crash, but on riscv64 this
would cause a panic.
2023-11-30 13:14:18 -07:00

497 lines
19 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Types.h>
#include <Kernel/Arch/InterruptManagement.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/Boot/BootInfo.h>
#include <Kernel/Boot/CommandLine.h>
#include <Kernel/Boot/Multiboot.h>
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Initializer.h>
#include <Kernel/Bus/USB/Drivers/USBDriver.h>
#include <Kernel/Bus/USB/USBManagement.h>
#include <Kernel/Bus/VirtIO/Device.h>
#include <Kernel/Bus/VirtIO/Transport/PCIe/Detect.h>
#include <Kernel/Devices/Audio/Management.h>
#include <Kernel/Devices/DeviceManagement.h>
#include <Kernel/Devices/GPU/Console/BootFramebufferConsole.h>
#include <Kernel/Devices/GPU/Management.h>
#include <Kernel/Devices/Generic/DeviceControlDevice.h>
#include <Kernel/Devices/Generic/FullDevice.h>
#include <Kernel/Devices/Generic/MemoryDevice.h>
#include <Kernel/Devices/Generic/NullDevice.h>
#include <Kernel/Devices/Generic/PCSpeakerDevice.h>
#include <Kernel/Devices/Generic/RandomDevice.h>
#include <Kernel/Devices/Generic/SelfTTYDevice.h>
#include <Kernel/Devices/Generic/ZeroDevice.h>
#include <Kernel/Devices/HID/Management.h>
#include <Kernel/Devices/KCOVDevice.h>
#include <Kernel/Devices/PCISerialDevice.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/Storage/StorageManagement.h>
#include <Kernel/Devices/TTY/ConsoleManagement.h>
#include <Kernel/Devices/TTY/PTYMultiplexer.h>
#include <Kernel/Devices/TTY/VirtualConsole.h>
#include <Kernel/FileSystem/SysFS/Registry.h>
#include <Kernel/FileSystem/SysFS/Subsystems/Firmware/Directory.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Firmware/ACPI/Initialize.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Library/Panic.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/Net/NetworkingManagement.h>
#include <Kernel/Prekernel/Prekernel.h>
#include <Kernel/Sections.h>
#include <Kernel/Security/Random.h>
#include <Kernel/Tasks/FinalizerTask.h>
#include <Kernel/Tasks/Process.h>
#include <Kernel/Tasks/Scheduler.h>
#include <Kernel/Tasks/SyncTask.h>
#include <Kernel/Tasks/WorkQueue.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/kstdio.h>
#if ARCH(X86_64)
# include <Kernel/Arch/x86_64/Hypervisor/VMWareBackdoor.h>
# include <Kernel/Arch/x86_64/Interrupts/APIC.h>
# include <Kernel/Arch/x86_64/Interrupts/PIC.h>
# include <Kernel/Devices/GPU/Console/VGATextModeConsole.h>
#elif ARCH(AARCH64)
# include <Kernel/Arch/aarch64/RPi/Framebuffer.h>
# include <Kernel/Arch/aarch64/RPi/Mailbox.h>
# include <Kernel/Arch/aarch64/RPi/MiniUART.h>
#endif
// Defined in the linker script
typedef void (*ctor_func_t)();
extern ctor_func_t start_heap_ctors[];
extern ctor_func_t end_heap_ctors[];
extern ctor_func_t start_ctors[];
extern ctor_func_t end_ctors[];
extern uintptr_t __stack_chk_guard;
READONLY_AFTER_INIT uintptr_t __stack_chk_guard __attribute__((used));
#if ARCH(X86_64)
extern "C" u8 start_of_safemem_text[];
extern "C" u8 end_of_safemem_text[];
extern "C" u8 start_of_safemem_atomic_text[];
extern "C" u8 end_of_safemem_atomic_text[];
#endif
extern "C" USB::DriverInitFunction driver_init_table_start[];
extern "C" USB::DriverInitFunction driver_init_table_end[];
extern "C" u8 end_of_kernel_image[];
multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
size_t multiboot_copy_boot_modules_count;
READONLY_AFTER_INIT bool g_in_early_boot;
namespace Kernel {
[[noreturn]] static void init_stage2(void*);
static void setup_serial_debug();
// boot.S expects these functions to exactly have the following signatures.
// We declare them here to ensure their signatures don't accidentally change.
extern "C" void init_finished(u32 cpu) __attribute__((used));
extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
extern "C" [[noreturn]] void init(BootInfo const&);
READONLY_AFTER_INIT VirtualConsole* tty0;
ProcessID g_init_pid { 0 };
ALWAYS_INLINE static Processor& bsp_processor()
{
// This solves a problem where the bsp Processor instance
// gets "re"-initialized in init() when we run all global constructors.
alignas(Processor) static u8 bsp_processor_storage[sizeof(Processor)];
return (Processor&)bsp_processor_storage;
}
// SerenityOS Kernel C++ entry point :^)
//
// This is where C++ execution begins, after boot.S transfers control here.
//
// The purpose of init() is to start multi-tasking. It does the bare minimum
// amount of work needed to start the scheduler.
//
// Once multi-tasking is ready, we spawn a new thread that starts in the
// init_stage2() function. Initialization continues there.
extern "C" {
READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
READONLY_AFTER_INIT size_t physical_to_virtual_offset;
READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
READONLY_AFTER_INIT FlatPtr kernel_load_base;
READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
READONLY_AFTER_INIT PhysicalAddress boot_pd0;
READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
READONLY_AFTER_INIT Memory::PageTableEntry* boot_pd_kernel_pt1023;
READONLY_AFTER_INIT StringView kernel_cmdline;
READONLY_AFTER_INIT u32 multiboot_flags;
READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
READONLY_AFTER_INIT size_t multiboot_memory_map_count;
READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
READONLY_AFTER_INIT size_t multiboot_modules_count;
READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
}
Atomic<Graphics::Console*> g_boot_console;
#if ARCH(AARCH64)
READONLY_AFTER_INIT static u8 s_command_line_buffer[512];
#endif
extern "C" [[noreturn]] UNMAP_AFTER_INIT void init([[maybe_unused]] BootInfo const& boot_info)
{
g_in_early_boot = true;
#if ARCH(X86_64)
start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
kernel_mapping_base = boot_info.kernel_mapping_base;
kernel_load_base = boot_info.kernel_load_base;
gdt64ptr = boot_info.gdt64ptr;
code64_sel = boot_info.code64_sel;
boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
boot_pd_kernel_pt1023 = (Memory::PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
char const* cmdline = (char const*)boot_info.kernel_cmdline;
kernel_cmdline = StringView { cmdline, strlen(cmdline) };
multiboot_flags = boot_info.multiboot_flags;
multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
multiboot_modules_count = boot_info.multiboot_modules_count;
multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
#elif ARCH(AARCH64)
// FIXME: For the aarch64 platforms, we should get the information by parsing a device tree instead of using multiboot.
auto [ram_base, ram_size] = RPi::Mailbox::the().query_lower_arm_memory_range();
auto [vcmem_base, vcmem_size] = RPi::Mailbox::the().query_videocore_memory_range();
multiboot_memory_map_t mmap[] = {
{
sizeof(struct multiboot_mmap_entry) - sizeof(u32),
(u64)ram_base,
(u64)ram_size,
MULTIBOOT_MEMORY_AVAILABLE,
},
{
sizeof(struct multiboot_mmap_entry) - sizeof(u32),
(u64)vcmem_base,
(u64)vcmem_size,
MULTIBOOT_MEMORY_RESERVED,
},
// FIXME: VideoCore only reports the first 1GB of RAM, the rest only shows up in the device tree.
};
multiboot_memory_map = mmap;
multiboot_memory_map_count = 2;
multiboot_modules = nullptr;
multiboot_modules_count = 0;
// FIXME: Read the /chosen/bootargs property.
kernel_cmdline = RPi::Mailbox::the().query_kernel_command_line(s_command_line_buffer);
#endif
setup_serial_debug();
// We need to copy the command line before kmalloc is initialized,
// as it may overwrite parts of multiboot!
CommandLine::early_initialize(kernel_cmdline);
if (multiboot_modules_count > 0) {
VERIFY(multiboot_modules);
memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
}
multiboot_copy_boot_modules_count = multiboot_modules_count;
new (&bsp_processor()) Processor();
bsp_processor().early_initialize(0);
// Invoke the constructors needed for the kernel heap
for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
(*ctor)();
kmalloc_init();
load_kernel_symbol_table();
bsp_processor().initialize(0);
CommandLine::initialize();
Memory::MemoryManager::initialize(0);
#if ARCH(AARCH64)
auto firmware_version = RPi::Mailbox::the().query_firmware_version();
dmesgln("RPi: Firmware version: {}", firmware_version);
RPi::Framebuffer::initialize();
#endif
// NOTE: If the bootloader provided a framebuffer, then set up an initial console.
// If the bootloader didn't provide a framebuffer, then set up an initial text console.
// We do so we can see the output on the screen as soon as possible.
if (!kernel_command_line().is_early_boot_console_disabled()) {
if ((multiboot_flags & MULTIBOOT_INFO_FRAMEBUFFER_INFO) && !multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
g_boot_console = &try_make_lock_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
} else {
#if ARCH(X86_64)
g_boot_console = &Graphics::VGATextModeConsole::initialize().leak_ref();
#else
dbgln("No early framebuffer console available");
#endif
}
}
dmesgln("Starting SerenityOS...");
#if ARCH(X86_64)
MM.unmap_prekernel();
// Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
VERIFY(+start_of_safemem_text != +end_of_safemem_text);
VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
#endif
// Invoke all static global constructors in the kernel.
// Note that we want to do this as early as possible.
for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
(*ctor)();
InterruptManagement::initialize();
ACPI::initialize();
// Initialize TimeManagement before using randomness!
TimeManagement::initialize(0);
DeviceManagement::initialize();
SysFSComponentRegistry::initialize();
DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
__stack_chk_guard = get_fast_random<uintptr_t>();
Process::initialize();
Scheduler::initialize();
#if ARCH(X86_64)
// FIXME: Add an abstraction for the smp related functions, instead of using ifdefs in this file.
if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
// We must set up the AP boot environment before switching to a kernel process,
// as pages below address USER_RANGE_BASE are only accessible through the kernel
// page directory.
APIC::the().setup_ap_boot_environment();
}
#endif
MUST(Process::create_kernel_process("init_stage2"sv, init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No));
Scheduler::start();
VERIFY_NOT_REACHED();
}
#if ARCH(X86_64)
//
// This is where C++ execution begins for APs, after boot.S transfers control here.
//
// The purpose of init_ap() is to initialize APs for multi-tasking.
//
extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
{
processor_info->early_initialize(cpu);
processor_info->initialize(cpu);
Memory::MemoryManager::initialize(cpu);
Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
Scheduler::start();
VERIFY_NOT_REACHED();
}
//
// This method is called once a CPU enters the scheduler and its idle thread
// At this point the initial boot stack can be freed
//
extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
{
if (cpu == 0) {
// TODO: we can reuse the boot stack, maybe for kmalloc()?
} else {
APIC::the().init_finished(cpu);
TimeManagement::initialize(cpu);
}
}
#endif
void init_stage2(void*)
{
// This is a little bit of a hack. We can't register our process at the time we're
// creating it, but we need to be registered otherwise finalization won't be happy.
// The colonel process gets away without having to do this because it never exits.
Process::register_new(Process::current());
WorkQueue::initialize();
#if ARCH(X86_64)
if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
// We can't start the APs until we have a scheduler up and running.
// We need to be able to process ICI messages, otherwise another
// core may send too many and end up deadlocking once the pool is
// exhausted
APIC::the().boot_aps();
}
#endif
// Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
PCI::initialize();
if (!PCI::Access::is_disabled()) {
PCISerialDevice::detect();
}
VirtualFileSystem::initialize();
#if ARCH(X86_64)
if (!is_serial_debug_enabled())
(void)SerialDevice::must_create(0).leak_ref();
(void)SerialDevice::must_create(1).leak_ref();
(void)SerialDevice::must_create(2).leak_ref();
(void)SerialDevice::must_create(3).leak_ref();
#elif ARCH(AARCH64)
(void)MUST(RPi::MiniUART::create()).leak_ref();
#endif
(void)PCSpeakerDevice::must_create().leak_ref();
#if ARCH(X86_64)
VMWareBackdoor::the(); // don't wait until first mouse packet
#endif
MUST(HIDManagement::initialize());
GraphicsManagement::the().initialize();
ConsoleManagement::the().initialize();
SyncTask::spawn();
FinalizerTask::spawn();
auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
if (!PCI::Access::is_disabled()) {
USB::USBManagement::initialize();
}
SysFSFirmwareDirectory::initialize();
if (!PCI::Access::is_disabled()) {
VirtIO::detect_pci_instances();
}
NetworkingManagement::the().initialize();
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
(void)KCOVDevice::must_create().leak_ref();
#endif
(void)MemoryDevice::must_create().leak_ref();
(void)ZeroDevice::must_create().leak_ref();
(void)FullDevice::must_create().leak_ref();
(void)RandomDevice::must_create().leak_ref();
(void)SelfTTYDevice::must_create().leak_ref();
PTYMultiplexer::initialize();
AudioManagement::the().initialize();
// Initialize all USB Drivers
for (auto* init_function = driver_init_table_start; init_function != driver_init_table_end; init_function++)
(*init_function)();
StorageManagement::the().initialize(kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
for (int i = 0; i < 5; ++i) {
if (StorageManagement::the().determine_boot_device(kernel_command_line().root_device()))
break;
dbgln_if(STORAGE_DEVICE_DEBUG, "Boot device {} not found, sleeping 2 seconds", kernel_command_line().root_device());
(void)Thread::current()->sleep(Duration::from_seconds(2));
}
if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
PANIC("VirtualFileSystem::mount_root failed");
}
// Switch out of early boot mode.
g_in_early_boot = false;
// NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
MM.protect_readonly_after_init_memory();
// NOTE: Everything in the .ksyms section becomes read-only after this point.
MM.protect_ksyms_after_init();
// NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
MM.unmap_text_after_init();
auto userspace_init = kernel_command_line().userspace_init();
auto init_args = kernel_command_line().userspace_init_args();
dmesgln("Running first user process: {}", userspace_init);
dmesgln("Init (first) process args: {}", init_args);
auto init_or_error = Process::create_user_process(userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
if (init_or_error.is_error())
PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
auto [init_process, init_thread] = init_or_error.release_value();
g_init_pid = init_process->pid();
init_thread->set_priority(THREAD_PRIORITY_HIGH);
NetworkTask::spawn();
// NOTE: All kernel processes must be created before enabling boot profiling.
// This is so profiling_enable() can emit process created performance events for them.
if (boot_profiling) {
dbgln("Starting full system boot profiling");
MutexLocker mutex_locker(Process::current().big_lock());
auto const enable_all = ~(u64)0;
auto result = Process::current().profiling_enable(-1, enable_all);
VERIFY(!result.is_error());
}
Process::current().sys$exit(0);
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT void setup_serial_debug()
{
// serial_debug will output all the dbgln() data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
if (kernel_cmdline.contains("serial_debug"sv)) {
set_serial_debug_enabled(true);
}
}
// Define some Itanium C++ ABI methods to stop the linker from complaining.
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
}