ladybird/Kernel/Syscalls/futex.cpp
kleines Filmröllchen a6a439243f Kernel: Turn lock ranks into template parameters
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
  obtain any lock rank just via the template parameter. It was not
  previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
  of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
  readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
  wanted in the first place (or made use of). Locks randomly changing
  their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
  taken in the right order (with the right lock rank checking
  implementation) as rank information is fully statically known.

This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
2023-01-02 18:15:27 -05:00

331 lines
13 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <Kernel/Debug.h>
#include <Kernel/Memory/InodeVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Process.h>
namespace Kernel {
static Singleton<SpinlockProtected<HashMap<GlobalFutexKey, NonnullLockRefPtr<FutexQueue>>, LockRank::None>> s_global_futex_queues;
void Process::clear_futex_queues_on_exec()
{
s_global_futex_queues->with([this](auto& queues) {
auto const* address_space = this->address_space().with([](auto& space) { return space.ptr(); });
queues.remove_all_matching([address_space](auto& futex_key, auto& futex_queue) {
if ((futex_key.raw.offset & futex_key_private_flag) == 0)
return false;
if (futex_key.private_.address_space != address_space)
return false;
bool did_wake_all;
futex_queue->wake_all(did_wake_all);
VERIFY(did_wake_all); // No one should be left behind...
return true;
});
});
}
ErrorOr<GlobalFutexKey> Process::get_futex_key(FlatPtr user_address, bool shared)
{
if (user_address & 0b11) // user_address points to a u32, so must be 4byte aligned
return EINVAL;
auto range = Memory::VirtualRange { VirtualAddress(user_address), sizeof(u32) };
if (!Kernel::Memory::is_user_range(range))
return EFAULT;
if (!shared) { // If this is thread-shared, we can skip searching the matching region
return GlobalFutexKey {
.private_ = {
.address_space = this->address_space().with([](auto& space) { return space.ptr(); }),
.user_address = user_address | futex_key_private_flag,
}
};
}
return address_space().with([&](auto& space) -> ErrorOr<GlobalFutexKey> {
auto* matching_region = space->find_region_containing(range);
if (!matching_region)
return EFAULT;
// The user wants to share this futex, but if the address doesn't point to a shared resource, there's not
// much sharing to be done, so let's mark this as private
if (!matching_region->is_shared()) {
return GlobalFutexKey {
.private_ = {
.address_space = space.ptr(),
.user_address = user_address | futex_key_private_flag,
}
};
}
// This address is backed by a shared VMObject, if it's an AnonymousVMObject, it can be shared between processes
// via forking, and shared regions that are cloned during a fork retain their original AnonymousVMObject.
// On the other hand, if it's a SharedInodeVMObject, it can be shared by two processes mapping the same file as
// MAP_SHARED, but since they are deduplicated based on the inode, in all cases the VMObject pointer should be
// a unique global identifier.
// NOTE: This assumes that a program will not unmap the only region keeping the vmobject alive while waiting on it,
// if it does, it will get stuck waiting forever until interrupted by a signal, but since that use case is defined as
// a programmer error, we are fine with it.
auto const& vmobject = matching_region->vmobject();
if (vmobject.is_inode())
VERIFY(vmobject.is_shared_inode());
return GlobalFutexKey {
.shared = {
.vmobject = &vmobject,
.offset = matching_region->offset_in_vmobject_from_vaddr(range.base()) }
};
});
}
ErrorOr<FlatPtr> Process::sys$futex(Userspace<Syscall::SC_futex_params const*> user_params)
{
VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
auto params = TRY(copy_typed_from_user(user_params));
Thread::BlockTimeout timeout;
u32 cmd = params.futex_op & FUTEX_CMD_MASK;
bool use_realtime_clock = (params.futex_op & FUTEX_CLOCK_REALTIME) != 0;
if (use_realtime_clock && cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET) {
return ENOSYS;
}
bool shared = (params.futex_op & FUTEX_PRIVATE_FLAG) == 0;
switch (cmd) {
case FUTEX_WAIT:
case FUTEX_WAIT_BITSET:
case FUTEX_REQUEUE:
case FUTEX_CMP_REQUEUE: {
if (params.timeout) {
auto timeout_time = TRY(copy_time_from_user(params.timeout));
bool is_absolute = cmd != FUTEX_WAIT;
clockid_t clock_id = use_realtime_clock ? CLOCK_REALTIME_COARSE : CLOCK_MONOTONIC_COARSE;
timeout = Thread::BlockTimeout(is_absolute, &timeout_time, nullptr, clock_id);
}
if (cmd == FUTEX_WAIT_BITSET && params.val3 == FUTEX_BITSET_MATCH_ANY)
cmd = FUTEX_WAIT;
break;
case FUTEX_WAKE_BITSET:
if (params.val3 == FUTEX_BITSET_MATCH_ANY)
cmd = FUTEX_WAKE;
break;
}
}
auto find_futex_queue = [&](GlobalFutexKey futex_key, bool create_if_not_found, bool* did_create = nullptr) -> ErrorOr<LockRefPtr<FutexQueue>> {
VERIFY(!create_if_not_found || did_create != nullptr);
return s_global_futex_queues->with([&](auto& queues) -> ErrorOr<LockRefPtr<FutexQueue>> {
auto it = queues.find(futex_key);
if (it != queues.end())
return it->value;
if (!create_if_not_found)
return nullptr;
*did_create = true;
auto futex_queue = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) FutexQueue));
auto result = TRY(queues.try_set(futex_key, futex_queue));
VERIFY(result == AK::HashSetResult::InsertedNewEntry);
return futex_queue;
});
};
auto remove_futex_queue = [&](GlobalFutexKey futex_key) {
return s_global_futex_queues->with([&](auto& queues) {
auto it = queues.find(futex_key);
if (it == queues.end())
return;
if (it->value->try_remove())
queues.remove(it);
});
};
auto do_wake = [&](FlatPtr user_address, u32 count, Optional<u32> const& bitmask) -> ErrorOr<int> {
if (count == 0)
return 0;
auto futex_key = TRY(get_futex_key(user_address, shared));
auto futex_queue = TRY(find_futex_queue(futex_key, false));
if (!futex_queue)
return 0;
bool is_empty;
u32 woke_count = futex_queue->wake_n(count, bitmask, is_empty);
if (is_empty) {
// If there are no more waiters, we want to get rid of the futex!
remove_futex_queue(futex_key);
}
return (int)woke_count;
};
auto user_address = FlatPtr(params.userspace_address);
auto user_address2 = FlatPtr(params.userspace_address2);
auto do_wait = [&](u32 bitset) -> ErrorOr<FlatPtr> {
bool did_create;
LockRefPtr<FutexQueue> futex_queue;
auto futex_key = TRY(get_futex_key(user_address, shared));
do {
auto user_value = user_atomic_load_relaxed(params.userspace_address);
if (!user_value.has_value())
return EFAULT;
if (user_value.value() != params.val) {
dbgln_if(FUTEX_DEBUG, "futex wait: EAGAIN. user value: {:p} @ {:p} != val: {}", user_value.value(), params.userspace_address, params.val);
return EAGAIN;
}
atomic_thread_fence(AK::MemoryOrder::memory_order_acquire);
did_create = false;
futex_queue = TRY(find_futex_queue(futex_key, true, &did_create));
VERIFY(futex_queue);
// We need to try again if we didn't create this queue and the existing queue
// was removed before we were able to queue an imminent wait.
} while (!did_create && !futex_queue->queue_imminent_wait());
// We must not hold the lock before blocking. But we have a reference
// to the FutexQueue so that we can keep it alive.
Thread::BlockResult block_result = futex_queue->wait_on(timeout, bitset);
if (futex_queue->is_empty_and_no_imminent_waits()) {
// If there are no more waiters, we want to get rid of the futex!
remove_futex_queue(futex_key);
}
if (block_result == Thread::BlockResult::InterruptedByTimeout) {
return ETIMEDOUT;
}
return 0;
};
auto do_requeue = [&](Optional<u32> val3) -> ErrorOr<FlatPtr> {
auto user_value = user_atomic_load_relaxed(params.userspace_address);
if (!user_value.has_value())
return EFAULT;
if (val3.has_value() && val3.value() != user_value.value())
return EAGAIN;
atomic_thread_fence(AK::MemoryOrder::memory_order_acquire);
auto futex_key = TRY(get_futex_key(user_address, shared));
auto futex_queue = TRY(find_futex_queue(futex_key, false));
if (!futex_queue)
return 0;
LockRefPtr<FutexQueue> target_futex_queue;
bool is_empty = false;
bool is_target_empty = false;
auto futex_key2 = TRY(get_futex_key(user_address2, shared));
auto woken_or_requeued = TRY(futex_queue->wake_n_requeue(
params.val, [&]() -> ErrorOr<FutexQueue*> {
// NOTE: futex_queue's lock is being held while this callback is called
// The reason we're doing this in a callback is that we don't want to always
// create a target queue, only if we actually have anything to move to it!
target_futex_queue = TRY(find_futex_queue(futex_key2, true));
return target_futex_queue.ptr();
},
params.val2, is_empty, is_target_empty));
if (is_empty)
remove_futex_queue(futex_key);
if (is_target_empty && target_futex_queue)
remove_futex_queue(futex_key2);
return woken_or_requeued;
};
switch (cmd) {
case FUTEX_WAIT:
return do_wait(0);
case FUTEX_WAKE:
return TRY(do_wake(user_address, params.val, {}));
case FUTEX_WAKE_OP: {
Optional<u32> oldval;
u32 op_arg = _FUTEX_OP_ARG(params.val3);
auto op = _FUTEX_OP(params.val3);
if (op & FUTEX_OP_ARG_SHIFT) {
op_arg = 1 << op_arg;
op &= FUTEX_OP_ARG_SHIFT;
}
atomic_thread_fence(AK::MemoryOrder::memory_order_release);
switch (op) {
case FUTEX_OP_SET:
oldval = user_atomic_exchange_relaxed(params.userspace_address2, op_arg);
break;
case FUTEX_OP_ADD:
oldval = user_atomic_fetch_add_relaxed(params.userspace_address2, op_arg);
break;
case FUTEX_OP_OR:
oldval = user_atomic_fetch_or_relaxed(params.userspace_address2, op_arg);
break;
case FUTEX_OP_ANDN:
oldval = user_atomic_fetch_and_not_relaxed(params.userspace_address2, op_arg);
break;
case FUTEX_OP_XOR:
oldval = user_atomic_fetch_xor_relaxed(params.userspace_address2, op_arg);
break;
default:
return EINVAL;
}
if (!oldval.has_value())
return EFAULT;
atomic_thread_fence(AK::MemoryOrder::memory_order_acquire);
auto result = TRY(do_wake(user_address, params.val, {}));
if (params.val2 > 0) {
bool compare_result;
switch (_FUTEX_CMP(params.val3)) {
case FUTEX_OP_CMP_EQ:
compare_result = (oldval.value() == _FUTEX_CMP_ARG(params.val3));
break;
case FUTEX_OP_CMP_NE:
compare_result = (oldval.value() != _FUTEX_CMP_ARG(params.val3));
break;
case FUTEX_OP_CMP_LT:
compare_result = (oldval.value() < _FUTEX_CMP_ARG(params.val3));
break;
case FUTEX_OP_CMP_LE:
compare_result = (oldval.value() <= _FUTEX_CMP_ARG(params.val3));
break;
case FUTEX_OP_CMP_GT:
compare_result = (oldval.value() > _FUTEX_CMP_ARG(params.val3));
break;
case FUTEX_OP_CMP_GE:
compare_result = (oldval.value() >= _FUTEX_CMP_ARG(params.val3));
break;
default:
return EINVAL;
}
if (compare_result)
result += TRY(do_wake(user_address2, params.val2, {}));
}
return result;
}
case FUTEX_REQUEUE:
return do_requeue({});
case FUTEX_CMP_REQUEUE:
return do_requeue(params.val3);
case FUTEX_WAIT_BITSET:
VERIFY(params.val3 != FUTEX_BITSET_MATCH_ANY); // we should have turned it into FUTEX_WAIT
if (params.val3 == 0)
return EINVAL;
return do_wait(params.val3);
case FUTEX_WAKE_BITSET:
VERIFY(params.val3 != FUTEX_BITSET_MATCH_ANY); // we should have turned it into FUTEX_WAKE
if (params.val3 == 0)
return EINVAL;
return TRY(do_wake(user_address, params.val, params.val3));
}
return ENOSYS;
}
}