ladybird/AK/BinaryHeap.h
Dan Klishch ba24e86fdd AK: Introduce IntrusiveBinaryHeap and reimplement BinaryHeap using it
The main difference between them is that IntrusiveBinaryHeap can
optionally maintain an index inside every stored node that allows
arbitrary nodes to be deleted.
2024-02-25 17:24:36 -07:00

181 lines
4 KiB
C++

/*
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Noncopyable.h>
#include <AK/Vector.h>
namespace AK {
template<typename Node, typename Comparator, typename IndexSetter, size_t inline_capacity = 0>
class IntrusiveBinaryHeap {
AK_MAKE_DEFAULT_COPYABLE(IntrusiveBinaryHeap);
AK_MAKE_DEFAULT_MOVABLE(IntrusiveBinaryHeap);
public:
IntrusiveBinaryHeap() = default;
IntrusiveBinaryHeap(Vector<Node, inline_capacity>&& nodes)
: m_nodes(move(nodes))
{
for (ssize_t i = m_nodes.size() / 2; i--;)
heapify_down(i);
}
[[nodiscard]] size_t size() const { return m_nodes.size(); }
[[nodiscard]] bool is_empty() const { return m_nodes.is_empty(); }
void insert(Node const& node)
{
m_nodes.append(node);
IndexSetter {}(m_nodes.last(), m_nodes.size() - 1);
heapify_up(m_nodes.size() - 1);
}
void insert(Node&& node)
{
m_nodes.append(move(node));
IndexSetter {}(m_nodes.last(), m_nodes.size() - 1);
heapify_up(m_nodes.size() - 1);
}
Node pop(size_t i)
{
while (i != 0) {
swap_indices(i, (i - 1) / 2);
i = (i - 1) / 2;
}
swap_indices(0, m_nodes.size() - 1);
Node node = m_nodes.take_last();
heapify_down(0);
return node;
}
Node pop_min()
{
return pop(0);
}
Node const& peek_min() const
{
return m_nodes[0];
}
void clear()
{
m_nodes.clear();
}
ReadonlySpan<Node> nodes_in_arbitrary_order() const
{
return m_nodes;
}
private:
void swap_indices(size_t i, size_t j)
{
swap(m_nodes[i], m_nodes[j]);
IndexSetter {}(m_nodes[i], i);
IndexSetter {}(m_nodes[j], j);
}
bool compare_indices(size_t i, size_t j)
{
return Comparator {}(m_nodes[i], m_nodes[j]);
}
void heapify_up(size_t i)
{
while (i != 0) {
auto parent = (i - 1) / 2;
if (compare_indices(parent, i))
break;
swap_indices(i, parent);
i = parent;
}
}
void heapify_down(size_t i)
{
while (i * 2 + 1 < size()) {
size_t min_child = i * 2 + 1;
size_t other_child = i * 2 + 2;
if (other_child < size() && compare_indices(other_child, min_child))
min_child = other_child;
if (compare_indices(i, min_child))
break;
swap_indices(i, min_child);
i = min_child;
}
}
Vector<Node, inline_capacity> m_nodes;
};
template<typename K, typename V, size_t inline_capacity>
class BinaryHeap {
public:
BinaryHeap() = default;
~BinaryHeap() = default;
// This constructor allows for O(n) construction of the heap (instead of O(nlogn) for repeated insertions)
BinaryHeap(K keys[], V values[], size_t size)
{
Vector<Node, inline_capacity> nodes;
nodes.ensure_capacity(size);
for (size_t i = 0; i < size; i++)
nodes.unchecked_append({ keys[i], values[i] });
m_heap = decltype(m_heap) { move(nodes) };
}
[[nodiscard]] size_t size() const { return m_heap.size(); }
[[nodiscard]] bool is_empty() const { return m_heap.is_empty(); }
void insert(K key, V value)
{
m_heap.insert({ key, value });
}
V pop_min()
{
return m_heap.pop_min().value;
}
[[nodiscard]] V const& peek_min() const
{
return m_heap.peek_min().value;
}
[[nodiscard]] K const& peek_min_key() const
{
return m_heap.peek_min().key;
}
void clear()
{
m_heap.clear();
}
private:
struct Node {
K key;
V value;
};
IntrusiveBinaryHeap<
Node,
decltype([](Node const& a, Node const& b) { return a.key < b.key; }),
decltype([](Node&, size_t) {})>
m_heap;
};
}
#if USING_AK_GLOBALLY
using AK::BinaryHeap;
using AK::IntrusiveBinaryHeap;
#endif