ladybird/Userland/DevTools/UserspaceEmulator/SoftVPU.cpp
Brian Gianforcaro d0a1775369 Everywhere: Fix a variety of typos
Spelling fixes found by `codespell`.
2022-09-14 04:46:49 +00:00

799 lines
24 KiB
C++

/*
* Copyright (c) 2022, Leon Albrecht <leon.a@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "SoftVPU.h"
#include "SoftCPU.h"
#include <AK/SIMDMath.h>
namespace UserspaceEmulator {
void SoftVPU::PREFETCHTNTA(X86::Instruction const&) { TODO(); }
void SoftVPU::PREFETCHT0(X86::Instruction const&) { TODO(); }
void SoftVPU::PREFETCHT1(X86::Instruction const&) { TODO(); }
void SoftVPU::PREFETCHT2(X86::Instruction const&) { TODO(); }
void SoftVPU::LDMXCSR(X86::Instruction const& insn)
{
// FIXME: Shadows
m_mxcsr.mxcsr = insn.modrm().read32(m_cpu, insn).value();
// #GP - General Protection Fault
VERIFY((m_mxcsr.mxcsr & 0xFFFF'0000) == 0);
// Just let the host's SSE (or if not available x87) handle the rounding for us
// We do not want to accidentally raise an FP-Exception on the host, so we
// mask all exceptions
#ifdef __SSE__
AK::MXCSR temp = m_mxcsr;
temp.invalid_operation_mask = 1;
temp.denormal_operation_mask = 1;
temp.divide_by_zero_mask = 1;
temp.overflow_mask = 1;
temp.underflow_mask = 1;
temp.precision_mask = 1;
AK::set_mxcsr(temp);
#else
// FIXME: This will mess with x87-land, because it uses the same trick, and
// Does not know of us doing this
AK::X87ControlWord cw { 0x037F };
cw.rounding_control = m_mxcsr.rounding_control;
AK::set_cw_x87(cw);
#endif
}
void SoftVPU::STMXCSR(X86::Instruction const& insn)
{
// FIXME: Shadows
insn.modrm().write32(m_cpu, insn, ValueWithShadow<u32>::create_initialized(m_mxcsr.mxcsr));
}
void SoftVPU::MOVUPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
u8 xmm1 = insn.modrm().reg();
if (insn.modrm().is_register()) {
m_xmm[xmm1] = m_xmm[insn.modrm().rm()];
} else {
// FIXME: Shadows
m_xmm[xmm1].ps = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
}
void SoftVPU::MOVSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
u8 xmm1 = insn.modrm().reg();
if (insn.modrm().is_register()) {
m_xmm[xmm1].ps[0] = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
m_xmm[xmm1].ps[0] = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
}
void SoftVPU::MOVUPS_xmm1m128_xmm2(X86::Instruction const& insn)
{
u8 xmm2 = insn.modrm().reg();
if (insn.modrm().is_register()) {
m_xmm[insn.modrm().rm()] = m_xmm[xmm2];
} else {
// FIXME: Shadows
u128 temp = bit_cast<u128>(m_xmm[xmm2]);
insn.modrm().write128(m_cpu, insn, ValueWithShadow<u128>::create_initialized(temp));
}
}
void SoftVPU::MOVSS_xmm1m32_xmm2(X86::Instruction const& insn)
{
u8 xmm2 = insn.modrm().reg();
if (insn.modrm().is_register()) {
m_xmm[insn.modrm().rm()].ps[0] = m_xmm[xmm2].ps[0];
} else {
// FIXME: Shadows
u32 temp = bit_cast<u32>(m_xmm[xmm2].ps[0]);
insn.modrm().write32(m_cpu, insn, ValueWithShadow<u32>::create_initialized(temp));
}
}
void SoftVPU::MOVLPS_xmm1_xmm2m64(X86::Instruction const& insn)
{
u8 xmm1 = insn.modrm().reg();
if (insn.modrm().is_register()) {
// Note: MOVHLPS
m_xmm[xmm1].puqw[0] = m_xmm[insn.modrm().rm()].puqw[1];
} else {
// FIXME: Shadows
// Note: Technically we are transferring two packed floats not a quad word
m_xmm[xmm1].puqw[0] = insn.modrm().read64(m_cpu, insn).value();
}
}
void SoftVPU::MOVLPS_m64_xmm2(X86::Instruction const& insn)
{
u8 xmm2 = insn.modrm().reg();
// FIXME: This might not hold true for SSE2 or later
VERIFY(!insn.modrm().is_register());
// Note: Technically we are transferring two packed floats not a quad word
insn.modrm().write64(m_cpu, insn, ValueWithShadow<u64>::create_initialized(m_xmm[xmm2].puqw[0]));
}
void SoftVPU::UNPCKLPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
f32x4& xmm1 = m_xmm[insn.modrm().reg()].ps;
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
f32x4 dest;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
dest[0] = xmm1[0];
dest[1] = xmm2m128[0];
dest[2] = xmm1[1];
dest[3] = xmm2m128[1];
m_xmm[insn.modrm().reg()].ps = dest;
}
void SoftVPU::UNPCKHPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
f32x4 xmm1 = m_xmm[insn.modrm().reg()].ps;
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
f32x4 dest;
dest[0] = xmm1[2];
dest[1] = xmm2m128[2];
dest[2] = xmm1[3];
dest[3] = xmm2m128[3];
m_xmm[insn.modrm().reg()].ps = dest;
}
void SoftVPU::MOVHPS_xmm1_xmm2m64(X86::Instruction const& insn)
{
u8 xmm1 = insn.modrm().reg();
if (insn.modrm().is_register()) {
// Note: MOVLHPS
m_xmm[xmm1].puqw[1] = m_xmm[insn.modrm().rm()].puqw[0];
} else {
// FIXME: Shadows
// Note: Technically we are transferring two packed floats not a quad word
m_xmm[xmm1].puqw[1] = insn.modrm().read64(m_cpu, insn).value();
}
}
void SoftVPU::MOVHPS_m64_xmm2(X86::Instruction const& insn)
{
u8 xmm1 = insn.modrm().reg();
VERIFY(!insn.modrm().is_register());
// Note: Technically we are transferring two packed floats not a quad word
insn.modrm().write64(m_cpu, insn, ValueWithShadow<u64>::create_initialized(m_xmm[xmm1].puqw[1]));
}
void SoftVPU::MOVAPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
u8 xmm1 = insn.modrm().reg();
if (insn.modrm().is_register()) {
m_xmm[xmm1] = m_xmm[insn.modrm().rm()];
} else {
// FIXME: Alignment-check 16
auto temp = insn.modrm().read128(m_cpu, insn);
m_xmm[xmm1].ps = bit_cast<f32x4>(temp.value());
}
}
void SoftVPU::MOVAPS_xmm1m128_xmm2(X86::Instruction const& insn)
{
u8 xmm2 = insn.modrm().reg();
if (insn.modrm().is_register()) {
m_xmm[insn.modrm().rm()] = m_xmm[xmm2];
} else {
// FIXME: Alignment-check 16
u128 temp = bit_cast<u128>(m_xmm[xmm2]);
insn.modrm().write128(m_cpu, insn, ValueWithShadow<u128>::create_initialized(temp));
}
}
void SoftVPU::CVTPI2PS_xmm1_mm2m64(X86::Instruction const& insn)
{
// FIXME: Raise Precision
// FIXME: Honor Rounding control
u8 xmm1 = insn.modrm().reg();
if (insn.modrm().is_register()) {
i32x2 mm = m_cpu.mmx_get(insn.modrm().rm()).v32;
m_xmm[xmm1].ps[0] = mm[0];
m_xmm[xmm1].ps[1] = mm[1];
} else {
// FIXME: Shadows
i32x2 m64 = bit_cast<i32x2>(insn.modrm().read64(m_cpu, insn).value());
m_xmm[xmm1].ps[0] = m64[0];
m_xmm[xmm1].ps[1] = m64[1];
}
}
void SoftVPU::CVTSI2SS_xmm1_rm32(X86::Instruction const& insn)
{
// FIXME: Raise Precision
// FIXME: Shadows
// FIXME: Honor Rounding Control
m_xmm[insn.modrm().reg()].ps[0] = (i32)insn.modrm().read32(m_cpu, insn).value();
}
void SoftVPU::MOVNTPS_xmm1m128_xmm2(X86::Instruction const&) { TODO(); }
void SoftVPU::CVTTPS2PI_mm1_xmm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::CVTTSS2SI_r32_xmm2m32(X86::Instruction const& insn)
{
// FIXME: Raise Invalid, Precision
float value;
if (insn.modrm().is_register())
value = m_xmm[insn.modrm().rm()].ps[0];
else
value = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
m_cpu.gpr32(insn.reg32()) = ValueWithShadow<u32>::create_initialized((u32)(i32)truncf(value));
}
void SoftVPU::CVTPS2PI_xmm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::CVTSS2SI_r32_xmm2m32(X86::Instruction const& insn)
{
// FIXME: Raise Invalid, Precision
insn.modrm().write32(m_cpu, insn,
ValueWithShadow<u32>::create_initialized(static_cast<i32>(m_xmm[insn.modrm().reg()].ps[0])));
}
void SoftVPU::UCOMISS_xmm1_xmm2m32(X86::Instruction const& insn)
{
float xmm1 = m_xmm[insn.modrm().reg()].ps[0];
float xmm2m32;
if (insn.modrm().is_register())
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
else
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
// FIXME: Raise Invalid on SNaN
if (isnan(xmm1) || isnan(xmm2m32)) {
m_cpu.set_zf(true);
m_cpu.set_pf(true);
m_cpu.set_cf(true);
} else {
m_cpu.set_zf(xmm1 == xmm2m32);
m_cpu.set_pf(false);
m_cpu.set_cf(xmm1 < xmm2m32);
}
m_cpu.set_of(false);
m_cpu.set_af(false);
m_cpu.set_sf(false);
}
void SoftVPU::COMISS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// FIXME: Raise on QNaN
UCOMISS_xmm1_xmm2m32(insn);
}
void SoftVPU::MOVMSKPS_reg_xmm(X86::Instruction const& insn)
{
VERIFY(insn.modrm().is_register());
u8 mask = 0;
f32x4 xmm = m_xmm[insn.modrm().rm()].ps;
mask |= signbit(xmm[0]) << 0;
mask |= signbit(xmm[1]) << 1;
mask |= signbit(xmm[2]) << 2;
mask |= signbit(xmm[3]) << 3;
m_cpu.gpr32(insn.reg32()) = ValueWithShadow<u32>::create_initialized(mask);
}
void SoftVPU::SQRTPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
// FIXME: Raise Invalid, Precision, Denormal
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps = sqrt(xmm2m128);
}
void SoftVPU::SQRTSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// FIXME: Raise Invalid, Precision, Denormal
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps[0] = AK::sqrt(xmm2m32);
}
void SoftVPU::RSQRTPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps = rsqrt(xmm2m128);
}
void SoftVPU::RSQRTSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps[0] = AK::rsqrt(xmm2m32);
}
void SoftVPU::RCPPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps = 1.f / xmm2m128;
}
void SoftVPU::RCPSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps[0] = 1.f / xmm2m32;
}
void SoftVPU::ANDPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
u32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].pudw;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<u32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].pudw &= xmm2m128;
}
void SoftVPU::ANDNPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
u32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].pudw;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<u32x4>(insn.modrm().read128(m_cpu, insn).value());
}
u32x4& xmm1 = m_xmm[insn.modrm().reg()].pudw;
xmm1 = ~xmm1 & xmm2m128;
}
void SoftVPU::ORPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
u32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].pudw;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<u32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].pudw |= xmm2m128;
}
void SoftVPU::XORPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
u32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].pudw;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<u32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].pudw ^= xmm2m128;
}
void SoftVPU::ADDPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Precision, Denormal
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps += xmm2m128;
}
void SoftVPU::ADDSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Precision, Denormal
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps[0] += xmm2m32;
}
void SoftVPU::MULPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Precision, Denormal
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps *= xmm2m128;
}
void SoftVPU::MULSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Precision, Denormal
float xmm1 = m_xmm[insn.modrm().reg()].ps[0];
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
xmm1 *= xmm2m32;
m_xmm[insn.modrm().reg()].ps[0] *= xmm1;
}
void SoftVPU::SUBPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Precision, Denormal
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps -= xmm2m128;
}
void SoftVPU::SUBSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Precision, Denormal
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps[0] -= xmm2m32;
}
void SoftVPU::MINPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
// FIXME: Raise Invalid (including QNaN Source Operand), Denormal
f32x4 xmm1 = m_xmm[insn.modrm().reg()].ps;
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
for (auto i = 0; i < 4; ++i) {
// When only one is NaN or both are 0.0s (of either sign), or
// FIXME: xmm2m32 is SNaN
// xmm2m32 is returned unchanged
if (isnan(xmm1[i]) || isnan(xmm2m128[i]) || xmm1[i] == xmm2m128[i])
xmm1[i] = xmm2m128[i];
else
xmm1[i] = min(xmm1[i], xmm2m128[i]);
}
m_xmm[insn.modrm().reg()].ps = xmm1;
}
void SoftVPU::MINSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// FIXME: Raise Invalid (Including QNaN Source Operand), Denormal
float xmm1 = m_xmm[insn.modrm().reg()].ps[0];
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
// When only one is NaN or both are 0.0s (of either sign), or
// FIXME: xmm2m32 is SNaN
// xmm2m32 is returned unchanged
if (isnan(xmm1) || isnan(xmm2m32) || xmm1 == xmm2m32)
xmm1 = xmm2m32;
else
xmm1 = min(xmm1, xmm2m32);
m_xmm[insn.modrm().reg()].ps[0] = xmm1;
}
void SoftVPU::DIVPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps /= xmm2m128;
}
void SoftVPU::DIVSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// Raise Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
m_xmm[insn.modrm().reg()].ps[0] /= xmm2m32;
}
void SoftVPU::MAXPS_xmm1_xmm2m128(X86::Instruction const& insn)
{
// FIXME: Raise Invalid (including QNaN Source Operand), Denormal
f32x4 xmm1 = m_xmm[insn.modrm().reg()].ps;
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
for (auto i = 0; i < 4; ++i) {
// When only one is NaN or both are 0.0s (of either sign), or
// FIXME: xmm2m32 is SNaN
// xmm2m32 is returned unchanged
if (isnan(xmm1[i]) || isnan(xmm2m128[i]) || xmm1[i] == xmm2m128[i])
xmm1[i] = xmm2m128[i];
else
xmm1[i] = max(xmm1[i], xmm2m128[i]);
}
m_xmm[insn.modrm().reg()].ps = xmm1;
}
void SoftVPU::MAXSS_xmm1_xmm2m32(X86::Instruction const& insn)
{
// FIXME: Raise Invalid (Including QNaN Source Operand), Denormal
float xmm1 = m_xmm[insn.modrm().reg()].ps[0];
float xmm2m32;
if (insn.modrm().is_register()) {
xmm2m32 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m32 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
// When only one is NaN or both are 0.0s (of either sign), or
// FIXME: xmm2m32 is SNaN
// xmm2m32 is returned unchanged
if (isnan(xmm1) || isnan(xmm2m32) || xmm1 == xmm2m32)
xmm1 = xmm2m32;
else
xmm1 = max(xmm1, xmm2m32);
m_xmm[insn.modrm().reg()].ps[0] = xmm1;
}
void SoftVPU::PSHUFW_mm1_mm2m64_imm8(X86::Instruction const& insn)
{
MMX src;
if (insn.modrm().is_register()) {
src = m_cpu.mmx_get(insn.modrm().rm());
} else {
// FIXME: Shadows
src = bit_cast<MMX>(insn.modrm().read64(m_cpu, insn).value());
}
u8 order = insn.imm8();
MMX dest;
dest.v16u[0] = src.v16u[(order >> 0) & 0b11];
dest.v16u[1] = src.v16u[(order >> 2) & 0b11];
dest.v16u[2] = src.v16u[(order >> 4) & 0b11];
dest.v16u[3] = src.v16u[(order >> 6) & 0b11];
m_cpu.mmx_set(insn.modrm().reg(), dest);
}
void SoftVPU::CMPPS_xmm1_xmm2m128_imm8(X86::Instruction const& insn)
{
// FIXME: Raise Denormal, Invalid Operation (QNaN dependent on imm8)
XMM& xmm1 = m_xmm[insn.modrm().reg()];
f32x4 xmm2m128;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
using enum ComparePredicate;
switch ((ComparePredicate)insn.imm8()) {
case EQ:
xmm1.ps = xmm1.ps == xmm2m128;
break;
case LT:
xmm1.ps = xmm1.ps < xmm2m128;
break;
case LE:
xmm1.ps = xmm1.ps <= xmm2m128;
break;
case UNORD:
for (auto i = 0; i < 4; ++i)
xmm1.pudw[i] = 0xFFFF'FFFF * (isnan(xmm1.ps[i]) || isnan(xmm2m128[i]));
break;
case NEQ:
xmm1.ps = xmm1.ps != xmm2m128;
break;
case NLT:
xmm1.ps = xmm1.ps >= xmm2m128;
break;
case NLE:
xmm1.ps = xmm1.ps > xmm2m128;
break;
case ORD:
for (auto i = 0; i < 4; ++i)
xmm1.pudw[i] = 0xFFFF'FFFF * (!isnan(xmm1.ps[i]) && !isnan(xmm2m128[i]));
break;
}
}
void SoftVPU::CMPSS_xmm1_xmm2m32_imm8(X86::Instruction const& insn)
{
// FIXME: Raise Denormal, Invalid Operation (QNaN dependent on imm8)
float xmm1 = m_xmm[insn.modrm().reg()].ps[0];
float xmm2m128;
bool res;
if (insn.modrm().is_register()) {
xmm2m128 = m_xmm[insn.modrm().rm()].ps[0];
} else {
// FIXME: Shadows
xmm2m128 = bit_cast<float>(insn.modrm().read32(m_cpu, insn).value());
}
using enum ComparePredicate;
switch ((ComparePredicate)insn.imm8()) {
case EQ:
res = xmm1 == xmm2m128;
break;
case LT:
res = xmm1 < xmm2m128;
break;
case LE:
res = xmm1 <= xmm2m128;
break;
case UNORD:
res = isnan(xmm1) || isnan(xmm2m128);
break;
case NEQ:
res = xmm1 != xmm2m128;
break;
case NLT:
res = xmm1 >= xmm2m128;
break;
case NLE:
res = xmm1 > xmm2m128;
break;
case ORD:
res = !isnan(xmm1) && !isnan(xmm2m128);
break;
}
m_xmm[insn.modrm().reg()].pudw[0] = 0xFFFF'FFFF * res;
}
void SoftVPU::PINSRW_mm1_r32m16_imm8(X86::Instruction const&) { TODO(); }
void SoftVPU::PINSRW_xmm1_r32m16_imm8(X86::Instruction const&) { TODO(); }
void SoftVPU::PEXTRW_reg_mm1_imm8(X86::Instruction const&) { TODO(); }
void SoftVPU::PEXTRW_reg_xmm1_imm8(X86::Instruction const&) { TODO(); }
void SoftVPU::SHUFPS_xmm1_xmm2m128_imm8(X86::Instruction const& insn)
{
f32x4 src;
if (insn.modrm().is_register()) {
src = m_xmm[insn.modrm().rm()].ps;
} else {
// FIXME: Shadows
src = bit_cast<f32x4>(insn.modrm().read128(m_cpu, insn).value());
}
u8 order = insn.imm8();
f32x4 dest;
dest[0] = src[(order >> 0) & 0b11];
dest[1] = src[(order >> 2) & 0b11];
dest[2] = src[(order >> 4) & 0b11];
dest[3] = src[(order >> 6) & 0b11];
m_xmm[insn.modrm().reg()].ps = dest;
}
void SoftVPU::PMOVMSKB_reg_mm1(X86::Instruction const&) { TODO(); }
void SoftVPU::PMOVMSKB_reg_xmm1(X86::Instruction const& insn)
{
VERIFY(insn.modrm().is_register());
XMM src = m_xmm[insn.modrm().rm()];
u32 dest = 0;
for (int i = 0; i < 16; ++i)
dest |= (src.pub[i] >> 7) << i;
m_cpu.gpr32(insn.reg32()) = ValueWithShadow<u32>::create_initialized(dest);
}
void SoftVPU::PMINUB_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PMINUB_xmm1_xmm2m128(X86::Instruction const&) { TODO(); }
void SoftVPU::PMAXUB_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PMAXUB_xmm1_xmm2m128(X86::Instruction const&) { TODO(); }
void SoftVPU::PAVGB_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PAVGB_xmm1_xmm2m128(X86::Instruction const&) { TODO(); }
void SoftVPU::PAVGW_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PAVGW_xmm1_xmm2m128(X86::Instruction const&) { TODO(); }
void SoftVPU::PMULHUW_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PMULHUW_xmm1_xmm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::MOVNTQ_m64_mm1(X86::Instruction const&) { TODO(); }
void SoftVPU::PMINSB_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PMINSB_xmm1_xmm2m128(X86::Instruction const&) { TODO(); }
void SoftVPU::PMAXSB_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PMAXSB_xmm1_xmm2m128(X86::Instruction const&) { TODO(); }
void SoftVPU::PSADBB_mm1_mm2m64(X86::Instruction const&) { TODO(); }
void SoftVPU::PSADBB_xmm1_xmm2m128(X86::Instruction const&) { TODO(); }
void SoftVPU::MASKMOVQ_mm1_mm2m64(X86::Instruction const&) { TODO(); }
}