ladybird/Tests/LibWasm/test-wasm.cpp
Diego 906fa04822 LibWasm: Properly check for indeterminate NaNs in SIMD tests
Because `nan:arithmetic` and `nan:canonical` aren't bound to a single
bit pattern, we cannot check against a float-containing SIMD vector
against a single value in the tests. Now, we represent `v128`s as
`TypedArray`s in `testjs` (as opposed to using `BigInt`s), allowing us
to properly check `NaN` bit patterns.
2024-07-12 18:27:47 +02:00

424 lines
20 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/MemoryStream.h>
#include <LibTest/JavaScriptTestRunner.h>
#include <LibWasm/AbstractMachine/BytecodeInterpreter.h>
#include <LibWasm/Types.h>
#include <string.h>
TEST_ROOT("Userland/Libraries/LibWasm/Tests");
TESTJS_GLOBAL_FUNCTION(read_binary_wasm_file, readBinaryWasmFile)
{
auto& realm = *vm.current_realm();
auto error_code_to_string = [](int code) {
auto const* error_string = strerror(code);
return StringView { error_string, strlen(error_string) };
};
auto filename = TRY(vm.argument(0).to_byte_string(vm));
auto file = Core::File::open(filename, Core::File::OpenMode::Read);
if (file.is_error())
return vm.throw_completion<JS::TypeError>(error_code_to_string(file.error().code()));
auto file_size = file.value()->size();
if (file_size.is_error())
return vm.throw_completion<JS::TypeError>(error_code_to_string(file_size.error().code()));
auto array = TRY(JS::Uint8Array::create(realm, file_size.value()));
auto read = file.value()->read_until_filled(array->data());
if (read.is_error())
return vm.throw_completion<JS::TypeError>(error_code_to_string(read.error().code()));
return JS::Value(array);
}
class WebAssemblyModule final : public JS::Object {
JS_OBJECT(WebAssemblyModule, JS::Object);
public:
explicit WebAssemblyModule(JS::Object& prototype)
: JS::Object(ConstructWithPrototypeTag::Tag, prototype)
{
m_machine.enable_instruction_count_limit();
}
static Wasm::AbstractMachine& machine() { return m_machine; }
Wasm::Module& module() { return *m_module; }
Wasm::ModuleInstance& module_instance() { return *m_module_instance; }
static JS::ThrowCompletionOr<WebAssemblyModule*> create(JS::Realm& realm, Wasm::Module module, HashMap<Wasm::Linker::Name, Wasm::ExternValue> const& imports)
{
auto& vm = realm.vm();
auto instance = realm.heap().allocate<WebAssemblyModule>(realm, realm.intrinsics().object_prototype());
instance->m_module = move(module);
Wasm::Linker linker(*instance->m_module);
linker.link(imports);
linker.link(spec_test_namespace());
auto link_result = linker.finish();
if (link_result.is_error())
return vm.throw_completion<JS::TypeError>("Link failed"sv);
auto result = machine().instantiate(*instance->m_module, link_result.release_value());
if (result.is_error())
return vm.throw_completion<JS::TypeError>(result.release_error().error);
instance->m_module_instance = result.release_value();
return instance.ptr();
}
void initialize(JS::Realm&) override;
~WebAssemblyModule() override = default;
private:
JS_DECLARE_NATIVE_FUNCTION(get_export);
JS_DECLARE_NATIVE_FUNCTION(wasm_invoke);
static HashMap<Wasm::Linker::Name, Wasm::ExternValue> const& spec_test_namespace()
{
Wasm::FunctionType print_type { {}, {} };
auto address_print = alloc_noop_function(print_type);
s_spec_test_namespace.set({ "spectest", "print", print_type }, Wasm::ExternValue { *address_print });
Wasm::FunctionType print_i32_type { { Wasm::ValueType(Wasm::ValueType::I32) }, {} };
auto address_i32 = alloc_noop_function(print_i32_type);
s_spec_test_namespace.set({ "spectest", "print_i32", print_i32_type }, Wasm::ExternValue { *address_i32 });
Wasm::FunctionType print_i64_type { { Wasm::ValueType(Wasm::ValueType::I64) }, {} };
auto address_i64 = alloc_noop_function(print_i64_type);
s_spec_test_namespace.set({ "spectest", "print_i64", print_i64_type }, Wasm::ExternValue { *address_i64 });
Wasm::FunctionType print_f32_type { { Wasm::ValueType(Wasm::ValueType::F32) }, {} };
auto address_f32 = alloc_noop_function(print_f32_type);
s_spec_test_namespace.set({ "spectest", "print_f32", print_f32_type }, Wasm::ExternValue { *address_f32 });
Wasm::FunctionType print_f64_type { { Wasm::ValueType(Wasm::ValueType::F64) }, {} };
auto address_f64 = alloc_noop_function(print_f64_type);
s_spec_test_namespace.set({ "spectest", "print_f64", print_f64_type }, Wasm::ExternValue { *address_f64 });
Wasm::FunctionType print_i32_f32_type { { Wasm::ValueType(Wasm::ValueType::I32), Wasm::ValueType(Wasm::ValueType::F32) }, {} };
auto address_i32_f32 = alloc_noop_function(print_i32_f32_type);
s_spec_test_namespace.set({ "spectest", "print_i32_f32", print_i32_f32_type }, Wasm::ExternValue { *address_i32_f32 });
Wasm::FunctionType print_f64_f64_type { { Wasm::ValueType(Wasm::ValueType::F64), Wasm::ValueType(Wasm::ValueType::F64) }, {} };
auto address_f64_f64 = alloc_noop_function(print_f64_f64_type);
s_spec_test_namespace.set({ "spectest", "print_f64_f64", print_f64_f64_type }, Wasm::ExternValue { *address_f64_f64 });
Wasm::TableType table_type { Wasm::ValueType(Wasm::ValueType::FunctionReference), Wasm::Limits(10, 20) };
auto table_address = m_machine.store().allocate(table_type);
s_spec_test_namespace.set({ "spectest", "table", table_type }, Wasm::ExternValue { *table_address });
Wasm::MemoryType memory_type { Wasm::Limits(1, 2) };
auto memory_address = m_machine.store().allocate(memory_type);
s_spec_test_namespace.set({ "spectest", "memory", memory_type }, Wasm::ExternValue { *memory_address });
Wasm::GlobalType global_i32 { Wasm::ValueType(Wasm::ValueType::I32), false };
auto global_i32_address = m_machine.store().allocate(global_i32, Wasm::Value(666));
s_spec_test_namespace.set({ "spectest", "global_i32", global_i32 }, Wasm::ExternValue { *global_i32_address });
Wasm::GlobalType global_i64 { Wasm::ValueType(Wasm::ValueType::I64), false };
auto global_i64_address = m_machine.store().allocate(global_i64, Wasm::Value((i64)666));
s_spec_test_namespace.set({ "spectest", "global_i64", global_i64 }, Wasm::ExternValue { *global_i64_address });
Wasm::GlobalType global_f32 { Wasm::ValueType(Wasm::ValueType::F32), false };
auto global_f32_address = m_machine.store().allocate(global_f32, Wasm::Value(666.6f));
s_spec_test_namespace.set({ "spectest", "global_f32", global_f32 }, Wasm::ExternValue { *global_f32_address });
Wasm::GlobalType global_f64 { Wasm::ValueType(Wasm::ValueType::F64), false };
auto global_f64_address = m_machine.store().allocate(global_f64, Wasm::Value(666.6));
s_spec_test_namespace.set({ "spectest", "global_f64", global_f64 }, Wasm::ExternValue { *global_f64_address });
return s_spec_test_namespace;
}
static Optional<Wasm::FunctionAddress> alloc_noop_function(Wasm::FunctionType type)
{
return m_machine.store().allocate(Wasm::HostFunction {
[](auto&, auto&) -> Wasm::Result {
// Noop, this just needs to exist.
return Wasm::Result { Vector<Wasm::Value> {} };
},
type,
"__TEST" });
}
static HashMap<Wasm::Linker::Name, Wasm::ExternValue> s_spec_test_namespace;
static Wasm::AbstractMachine m_machine;
Optional<Wasm::Module> m_module;
OwnPtr<Wasm::ModuleInstance> m_module_instance;
};
Wasm::AbstractMachine WebAssemblyModule::m_machine;
HashMap<Wasm::Linker::Name, Wasm::ExternValue> WebAssemblyModule::s_spec_test_namespace;
TESTJS_GLOBAL_FUNCTION(parse_webassembly_module, parseWebAssemblyModule)
{
auto& realm = *vm.current_realm();
auto object = TRY(vm.argument(0).to_object(vm));
if (!is<JS::Uint8Array>(*object))
return vm.throw_completion<JS::TypeError>("Expected a Uint8Array argument to parse_webassembly_module"sv);
auto& array = static_cast<JS::Uint8Array&>(*object);
FixedMemoryStream stream { array.data() };
auto result = Wasm::Module::parse(stream);
if (result.is_error())
return vm.throw_completion<JS::SyntaxError>(Wasm::parse_error_to_byte_string(result.error()));
HashMap<Wasm::Linker::Name, Wasm::ExternValue> imports;
auto import_value = vm.argument(1);
if (import_value.is_object()) {
auto& import_object = import_value.as_object();
for (auto& property : import_object.shape().property_table()) {
auto value = import_object.get_without_side_effects(property.key);
if (!value.is_object() || !is<WebAssemblyModule>(value.as_object()))
continue;
auto& module_object = static_cast<WebAssemblyModule&>(value.as_object());
for (auto& entry : module_object.module_instance().exports()) {
// FIXME: Don't pretend that everything is a function
imports.set({ property.key.as_string(), entry.name(), Wasm::TypeIndex(0) }, entry.value());
}
}
}
return JS::Value(TRY(WebAssemblyModule::create(realm, result.release_value(), imports)));
}
TESTJS_GLOBAL_FUNCTION(compare_typed_arrays, compareTypedArrays)
{
auto lhs = TRY(vm.argument(0).to_object(vm));
if (!is<JS::TypedArrayBase>(*lhs))
return vm.throw_completion<JS::TypeError>("Expected a TypedArray"sv);
auto& lhs_array = static_cast<JS::TypedArrayBase&>(*lhs);
auto rhs = TRY(vm.argument(1).to_object(vm));
if (!is<JS::TypedArrayBase>(*rhs))
return vm.throw_completion<JS::TypeError>("Expected a TypedArray"sv);
auto& rhs_array = static_cast<JS::TypedArrayBase&>(*rhs);
return JS::Value(lhs_array.viewed_array_buffer()->buffer() == rhs_array.viewed_array_buffer()->buffer());
}
bool _is_canonical_nan32(u32 value)
{
return value == 0x7FC00000 || value == 0xFFC00000;
}
bool _is_canonical_nan64(u64 value)
{
return value == 0x7FF8000000000000 || value == 0xFFF8000000000000;
}
TESTJS_GLOBAL_FUNCTION(is_canonical_nan32, isCanonicalNaN32)
{
auto value = TRY(vm.argument(0).to_u32(vm));
return _is_canonical_nan32(value);
}
TESTJS_GLOBAL_FUNCTION(is_canonical_nan64, isCanonicalNaN64)
{
auto value = TRY(vm.argument(0).to_bigint_uint64(vm));
return _is_canonical_nan64(value);
}
TESTJS_GLOBAL_FUNCTION(is_arithmetic_nan32, isArithmeticNaN32)
{
auto value = bit_cast<float>(TRY(vm.argument(0).to_u32(vm)));
return isnan(value);
}
TESTJS_GLOBAL_FUNCTION(is_arithmetic_nan64, isArithmeticNaN64)
{
auto value = bit_cast<double>(TRY(vm.argument(0).to_bigint_uint64(vm)));
return isnan(value);
}
TESTJS_GLOBAL_FUNCTION(test_simd_vector, testSIMDVector)
{
auto expected = TRY(vm.argument(0).to_object(vm));
if (!is<JS::Array>(*expected))
return vm.throw_completion<JS::TypeError>("Expected an Array"sv);
auto& expected_array = static_cast<JS::Array&>(*expected);
auto got = TRY(vm.argument(1).to_object(vm));
if (!is<JS::TypedArrayBase>(*got))
return vm.throw_completion<JS::TypeError>("Expected a TypedArray"sv);
auto& got_array = static_cast<JS::TypedArrayBase&>(*got);
auto element_size = 128 / TRY(TRY(expected_array.get("length")).to_u32(vm));
size_t i = 0;
for (auto it = expected_array.indexed_properties().begin(false); it != expected_array.indexed_properties().end(); ++it) {
auto got_value = TRY(got_array.get(i++));
u64 got = got_value.is_bigint() ? TRY(got_value.to_bigint_uint64(vm)) : (u64)TRY(got_value.to_index(vm));
auto expect = TRY(expected_array.get(it.index()));
if (expect.is_string()) {
if (element_size != 32 && element_size != 64)
return vm.throw_completion<JS::TypeError>("Expected element of size 32 or 64"sv);
auto string = expect.as_string().utf8_string();
if (string == "nan:canonical") {
auto is_canonical = element_size == 32 ? _is_canonical_nan32(got) : _is_canonical_nan64(got);
if (!is_canonical)
return false;
continue;
}
if (string == "nan:arithmetic") {
auto is_arithmetic = element_size == 32 ? isnan(bit_cast<float>((u32)got)) : isnan(bit_cast<double>((u64)got));
if (!is_arithmetic)
return false;
continue;
}
return vm.throw_completion<JS::TypeError>(ByteString::formatted("Bad SIMD float expectation: {}"sv, string));
}
u64 expect_value = expect.is_bigint() ? TRY(expect.to_bigint_uint64(vm)) : (u64)TRY(expect.to_index(vm));
if (got != expect_value)
return false;
}
return true;
}
void WebAssemblyModule::initialize(JS::Realm& realm)
{
Base::initialize(realm);
define_native_function(realm, "getExport", get_export, 1, JS::default_attributes);
define_native_function(realm, "invoke", wasm_invoke, 1, JS::default_attributes);
}
JS_DEFINE_NATIVE_FUNCTION(WebAssemblyModule::get_export)
{
auto name = TRY(vm.argument(0).to_byte_string(vm));
auto this_value = vm.this_value();
auto object = TRY(this_value.to_object(vm));
if (!is<WebAssemblyModule>(*object))
return vm.throw_completion<JS::TypeError>("Not a WebAssemblyModule"sv);
auto& instance = static_cast<WebAssemblyModule&>(*object);
for (auto& entry : instance.module_instance().exports()) {
if (entry.name() == name) {
auto& value = entry.value();
if (auto ptr = value.get_pointer<Wasm::FunctionAddress>())
return JS::Value(static_cast<unsigned long>(ptr->value()));
if (auto v = value.get_pointer<Wasm::GlobalAddress>()) {
return m_machine.store().get(*v)->value().value().visit(
[&](auto const& value) -> JS::Value { return JS::Value(static_cast<double>(value)); },
[&](i32 value) { return JS::Value(static_cast<double>(value)); },
[&](i64 value) -> JS::Value { return JS::BigInt::create(vm, Crypto::SignedBigInteger { value }); },
[&](u128 value) -> JS::Value { return JS::BigInt::create(vm, Crypto::SignedBigInteger::import_data(bit_cast<u8 const*>(&value), sizeof(value))); },
[&](Wasm::Reference const& reference) -> JS::Value {
return reference.ref().visit(
[&](Wasm::Reference::Null const&) -> JS::Value { return JS::js_null(); },
[&](auto const& ref) -> JS::Value { return JS::Value(static_cast<double>(ref.address.value())); });
});
}
return vm.throw_completion<JS::TypeError>(TRY_OR_THROW_OOM(vm, String::formatted("'{}' does not refer to a function or a global", name)));
}
}
return vm.throw_completion<JS::TypeError>(TRY_OR_THROW_OOM(vm, String::formatted("'{}' could not be found", name)));
}
JS_DEFINE_NATIVE_FUNCTION(WebAssemblyModule::wasm_invoke)
{
auto address = static_cast<unsigned long>(TRY(vm.argument(0).to_double(vm)));
Wasm::FunctionAddress function_address { address };
auto function_instance = WebAssemblyModule::machine().store().get(function_address);
if (!function_instance)
return vm.throw_completion<JS::TypeError>("Invalid function address"sv);
Wasm::FunctionType const* type { nullptr };
function_instance->visit([&](auto& value) { type = &value.type(); });
if (!type)
return vm.throw_completion<JS::TypeError>("Invalid function found at given address"sv);
Vector<Wasm::Value> arguments;
if (type->parameters().size() + 1 > vm.argument_count())
return vm.throw_completion<JS::TypeError>(TRY_OR_THROW_OOM(vm, String::formatted("Expected {} arguments for call, but found {}", type->parameters().size() + 1, vm.argument_count())));
size_t index = 1;
for (auto& param : type->parameters()) {
auto argument = vm.argument(index++);
double double_value = 0;
if (!argument.is_bigint() && !argument.is_object())
double_value = TRY(argument.to_double(vm));
switch (param.kind()) {
case Wasm::ValueType::Kind::I32:
arguments.append(Wasm::Value(param, static_cast<i64>(double_value)));
break;
case Wasm::ValueType::Kind::I64:
if (argument.is_bigint()) {
auto value = TRY(argument.to_bigint_int64(vm));
arguments.append(Wasm::Value(param, value));
} else {
arguments.append(Wasm::Value(param, static_cast<i64>(double_value)));
}
break;
case Wasm::ValueType::Kind::F32:
arguments.append(Wasm::Value(bit_cast<float>(static_cast<u32>(double_value))));
break;
case Wasm::ValueType::Kind::F64:
if (argument.is_bigint()) {
auto value = TRY(argument.to_bigint_uint64(vm));
arguments.append(Wasm::Value(param, bit_cast<double>(value)));
} else {
arguments.append(Wasm::Value(param, double_value));
}
break;
case Wasm::ValueType::Kind::V128: {
auto object = MUST(argument.to_object(vm));
if (!is<JS::TypedArrayBase>(*object))
return vm.throw_completion<JS::TypeError>("Expected typed array"sv);
auto& array = static_cast<JS::TypedArrayBase&>(*object);
u128 bits = 0;
auto* ptr = bit_cast<u8*>(&bits);
memcpy(ptr, array.viewed_array_buffer()->buffer().data(), 16);
arguments.append(Wasm::Value(bits));
break;
}
case Wasm::ValueType::Kind::FunctionReference:
if (argument.is_null()) {
arguments.append(Wasm::Value(Wasm::Reference { Wasm::Reference::Null { Wasm::ValueType(Wasm::ValueType::Kind::FunctionReference) } }));
break;
}
arguments.append(Wasm::Value(Wasm::Reference { Wasm::Reference::Func { static_cast<u64>(double_value) } }));
break;
case Wasm::ValueType::Kind::ExternReference:
if (argument.is_null()) {
arguments.append(Wasm::Value(Wasm::Reference { Wasm::Reference::Null { Wasm::ValueType(Wasm::ValueType::Kind::ExternReference) } }));
break;
}
arguments.append(Wasm::Value(Wasm::Reference { Wasm::Reference::Extern { static_cast<u64>(double_value) } }));
break;
}
}
auto result = WebAssemblyModule::machine().invoke(function_address, arguments);
if (result.is_trap())
return vm.throw_completion<JS::TypeError>(TRY_OR_THROW_OOM(vm, String::formatted("Execution trapped: {}", result.trap().reason)));
if (result.is_completion())
return result.completion();
if (result.values().is_empty())
return JS::js_null();
auto to_js_value = [&](Wasm::Value const& value) {
return value.value().visit(
// For floating point values, we're testing with their bit representation, so we bit_cast them
[](f32 value) { return JS::Value(static_cast<double>(bit_cast<u32>(value))); },
[&](f64 value) { return JS::Value(JS::BigInt::create(vm, Crypto::SignedBigInteger { Crypto::UnsignedBigInteger { bit_cast<u64>(value) } })); },
[](i32 value) { return JS::Value(static_cast<double>(value)); },
[&](i64 value) { return JS::Value(JS::BigInt::create(vm, Crypto::SignedBigInteger { value })); },
[&](u128 value) {
// FIXME: remove the MUST here
auto buf = MUST(JS::ArrayBuffer::create(*vm.current_realm(), 16));
memcpy(buf->buffer().data(), value.bytes().data(), 16);
return JS::Value(buf);
},
[](Wasm::Reference const& reference) {
return reference.ref().visit(
[](Wasm::Reference::Null const&) { return JS::js_null(); },
[](auto const& ref) { return JS::Value(static_cast<double>(ref.address.value())); });
});
};
if (result.values().size() == 1)
return to_js_value(result.values().first());
return JS::Array::create_from<Wasm::Value>(*vm.current_realm(), result.values(), [&](Wasm::Value value) {
return to_js_value(value);
});
}