ladybird/Kernel/Net/NE2000NetworkAdapter.cpp
Linus Groh 649d2faeab Everywhere: Use "the SerenityOS developers." in copyright headers
We had some inconsistencies before:

- Sometimes "The", sometimes "the"
- Sometimes trailing ".", sometimes no trailing "."

I picked the most common one (lowecase "the", trailing ".") and applied
it to all copyright headers.

By using the exact same string everywhere we can ensure nothing gets
missed during a global search (and replace), and that these
inconsistencies are not spread any further (as copyright headers are
commonly copied to new files).
2021-04-29 00:59:26 +02:00

456 lines
17 KiB
C++

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/MACAddress.h>
#include <Kernel/Debug.h>
#include <Kernel/IO.h>
#include <Kernel/Net/NE2000NetworkAdapter.h>
namespace Kernel {
/**
* The NE2000 is an ancient 10 Mib/s Ethernet network card standard by Novell
* from the late 80s. Based on National Semiconductor's DP8390 Ethernet chip
* or compatible, they were known to be extremely bare-bones but also very
* cheap entry-level cards.
*
* QEMU supports them with the ne2k_{isa,pci} devices, physical incarnations
* were available from different manufacturers for the ISA bus and later on
* the PCI bus, including:
* - Realtek's RTL8029
* - VIA Technologies, Inc.'s VT86C926
*
* Official documentation from National Semiconductor includes:
* - Datasheet "DP8390D/NS32490D NIC Network Interface Controller"
* - Application Note 874 "Writing Drivers for the DP8390 NIC Family of Ethernet Controllers"
*
* This driver supports only the PCI variant.
*
* Remember, friends don't let friends use NE2000 network cards :^)
*/
// Page 0 registers
static constexpr u8 REG_RW_COMMAND = 0x00;
static constexpr u8 BIT_COMMAND_STOP = (0b1 << 0);
static constexpr u8 BIT_COMMAND_START = (0b1 << 1);
static constexpr u8 BIT_COMMAND_TXP = (0b1 << 2);
static constexpr u8 BIT_COMMAND_DMA_READ = (0b001 << 3);
static constexpr u8 BIT_COMMAND_DMA_WRITE = (0b010 << 3);
static constexpr u8 BIT_COMMAND_DMA_SEND = (0b011 << 3);
static constexpr u8 BIT_COMMAND_DMA_ABORT = (0b100 << 3);
static constexpr u8 BIT_COMMAND_DMA_FIELD = (0b111 << 3);
static constexpr u8 BIT_COMMAND_PAGE1 = (0b01 << 6);
static constexpr u8 BIT_COMMAND_PAGE2 = (0b10 << 6);
static constexpr u8 BIT_COMMAND_PAGE_FIELD = (0b11 << 6);
static constexpr u8 REG_WR_PAGESTART = 0x01;
static constexpr u8 REG_WR_PAGESTOP = 0x02;
static constexpr u8 REG_RW_BOUNDARY = 0x03;
static constexpr u8 REG_RD_TRANSMITSTATUS = 0x04;
static constexpr u8 REG_WR_TRANSMITPAGE = 0x04;
static constexpr u8 REG_RD_NCR = 0x05;
static constexpr u8 REG_WR_TRANSMITBYTECOUNT0 = 0x05;
static constexpr u8 REG_WR_TRANSMITBYTECOUNT1 = 0x06;
static constexpr u8 REG_RW_INTERRUPTSTATUS = 0x07;
static constexpr u8 REG_RD_CRDMA0 = 0x08;
static constexpr u8 REG_WR_REMOTESTARTADDRESS0 = 0x08;
static constexpr u8 REG_RD_CRDMA1 = 0x09;
static constexpr u8 REG_WR_REMOTESTARTADDRESS1 = 0x09;
static constexpr u8 REG_WR_REMOTEBYTECOUNT0 = 0x0a;
static constexpr u8 REG_WR_REMOTEBYTECOUNT1 = 0x0b;
static constexpr u8 REG_RD_RECEIVESTATUS = 0x0c;
static constexpr u8 BIT_RECEIVESTATUS_PRX = (0b1 << 0);
static constexpr u8 BIT_RECEIVESTATUS_CRC = (0b1 << 1);
static constexpr u8 BIT_RECEIVESTATUS_FAE = (0b1 << 2);
static constexpr u8 BIT_RECEIVESTATUS_FO = (0b1 << 3);
static constexpr u8 BIT_RECEIVESTATUS_MPA = (0b1 << 4);
static constexpr u8 REG_WR_RECEIVECONFIGURATION = 0x0c;
static constexpr u8 BIT_RECEIVECONFIGURATION_SEP = (0b1 << 0);
static constexpr u8 BIT_RECEIVECONFIGURATION_AR = (0b1 << 1);
static constexpr u8 BIT_RECEIVECONFIGURATION_AB = (0b1 << 2);
static constexpr u8 BIT_RECEIVECONFIGURATION_AM = (0b1 << 3);
static constexpr u8 BIT_RECEIVECONFIGURATION_PRO = (0b1 << 4);
static constexpr u8 BIT_RECEIVECONFIGURATION_MON = (0b1 << 5);
static constexpr u8 REG_RD_FAE_TALLY = 0x0d;
static constexpr u8 REG_WR_TRANSMITCONFIGURATION = 0x0d;
static constexpr u8 BIT_WR_TRANSMITCONFIGURATION_LOOPBACK = (0b10 << 0);
static constexpr u8 REG_RD_CRC_TALLY = 0x0e;
static constexpr u8 REG_WR_DATACONFIGURATION = 0x0e;
static constexpr u8 BIT_DATACONFIGURATION_WTS = (0b1 << 0);
static constexpr u8 BIT_DATACONFIGURATION_BOS = (0b1 << 1);
static constexpr u8 BIT_DATACONFIGURATION_LS = (0b1 << 2);
static constexpr u8 BIT_DATACONFIGURATION_FIFO_8B = (0b10 << 5);
static constexpr u8 REG_RD_MISS_PKT_TALLY = 0x0f;
static constexpr u8 REG_WR_INTERRUPTMASK = 0x0f;
static constexpr u8 BIT_INTERRUPTMASK_PRX = (0b1 << 0);
static constexpr u8 BIT_INTERRUPTMASK_PTX = (0b1 << 1);
static constexpr u8 BIT_INTERRUPTMASK_RXE = (0b1 << 2);
static constexpr u8 BIT_INTERRUPTMASK_TXE = (0b1 << 3);
static constexpr u8 BIT_INTERRUPTMASK_OVW = (0b1 << 4);
static constexpr u8 BIT_INTERRUPTMASK_CNT = (0b1 << 5);
static constexpr u8 BIT_INTERRUPTMASK_RDC = (0b1 << 6);
static constexpr u8 BIT_INTERRUPTMASK_RST = (0b1 << 7);
static constexpr u8 REG_RW_IOPORT = 0x10;
// Page 1 registers
static constexpr u8 REG_RW_PHYSICALADDRESS0 = 0x01;
static constexpr u8 REG_RW_CURRENT = 0x07;
static constexpr int NE2K_PAGE_SIZE = 256;
static constexpr int NE2K_RAM_BEGIN = 16384;
static constexpr int NE2K_RAM_END = 32768;
static constexpr int NE2K_RAM_SIZE = NE2K_RAM_END - NE2K_RAM_BEGIN;
static constexpr int NE2K_RAM_SEND_BEGIN = 16384;
static constexpr int NE2K_RAM_SEND_END = 16384 + 6 * 256;
static constexpr int NE2K_RAM_SEND_SIZE = NE2K_RAM_SEND_END - NE2K_RAM_SEND_BEGIN;
static constexpr int NE2K_RAM_RECV_BEGIN = NE2K_RAM_SEND_END;
static constexpr int NE2K_RAM_RECV_END = NE2K_RAM_END;
static constexpr int NE2K_RAM_RECV_SIZE = NE2K_RAM_RECV_END - NE2K_RAM_RECV_BEGIN;
static_assert(NE2K_RAM_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_END % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_SEND_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_SEND_END % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_RECV_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_RECV_END % NE2K_PAGE_SIZE == 0);
struct [[gnu::packed]] received_packet_header {
u8 status;
u8 next_packet_page;
u16 length;
};
UNMAP_AFTER_INIT void NE2000NetworkAdapter::detect()
{
static const auto ne2k_ids = Array<PCI::ID, 11> {
PCI::ID { 0x10EC, 0x8029 }, // RealTek RTL-8029(AS)
// List of clones, taken from Linux's ne2k-pci.c
PCI::ID { 0x1050, 0x0940 }, // Winbond 89C940
PCI::ID { 0x11f6, 0x1401 }, // Compex RL2000
PCI::ID { 0x8e2e, 0x3000 }, // KTI ET32P2
PCI::ID { 0x4a14, 0x5000 }, // NetVin NV5000SC
PCI::ID { 0x1106, 0x0926 }, // Via 86C926
PCI::ID { 0x10bd, 0x0e34 }, // SureCom NE34
PCI::ID { 0x1050, 0x5a5a }, // Winbond W89C940F
PCI::ID { 0x12c3, 0x0058 }, // Holtek HT80232
PCI::ID { 0x12c3, 0x5598 }, // Holtek HT80229
PCI::ID { 0x8c4a, 0x1980 }, // Winbond W89C940 (misprogrammed)
};
PCI::enumerate([&](const PCI::Address& address, PCI::ID id) {
if (address.is_null())
return;
if (!ne2k_ids.span().contains_slow(id))
return;
u8 irq = PCI::get_interrupt_line(address);
[[maybe_unused]] auto& unused = adopt_ref(*new NE2000NetworkAdapter(address, irq)).leak_ref();
});
}
UNMAP_AFTER_INIT NE2000NetworkAdapter::NE2000NetworkAdapter(PCI::Address address, u8 irq)
: PCI::Device(address, irq)
, m_io_base(PCI::get_BAR0(pci_address()) & ~3)
{
set_interface_name("ne2k");
dmesgln("NE2000: Found @ {}", pci_address());
m_interrupt_line = PCI::get_interrupt_line(pci_address());
dmesgln("NE2000: Port base: {}", m_io_base);
dmesgln("NE2000: Interrupt line: {}", m_interrupt_line);
int ram_errors = ram_test();
dmesgln("NE2000: RAM test {}, got {} byte errors", (ram_errors == 0 ? "OK" : "KO"), ram_errors);
reset();
set_mac_address(m_mac_address);
dmesgln("NE2000: MAC address: {}", m_mac_address.to_string().characters());
enable_irq();
}
UNMAP_AFTER_INIT NE2000NetworkAdapter::~NE2000NetworkAdapter()
{
}
void NE2000NetworkAdapter::handle_irq(const RegisterState&)
{
u8 status = in8(REG_RW_INTERRUPTSTATUS);
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Got interrupt, status={:#02x}", status);
if (status & BIT_INTERRUPTMASK_PRX) {
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Interrupt for packet received");
}
if (status & BIT_INTERRUPTMASK_PTX) {
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Interrupt for packet sent");
}
if (status & BIT_INTERRUPTMASK_RXE) {
u8 fae = in8(REG_RD_FAE_TALLY);
u8 crc = in8(REG_RD_CRC_TALLY);
u8 miss = in8(REG_RD_MISS_PKT_TALLY);
dmesgln("NE2000NetworkAdapter: Packet reception error framing={} crc={} missed={}", fae, crc, miss);
// TODO: handle counters
}
if (status & BIT_INTERRUPTMASK_TXE) {
dmesgln("NE2000NetworkAdapter: Packet transmission error");
}
if (status & BIT_INTERRUPTMASK_OVW) {
dmesgln("NE2000NetworkAdapter: Ring buffer reception overflow error");
// TODO: handle counters
}
if (status & BIT_INTERRUPTMASK_CNT) {
dmesgln("NE2000NetworkAdapter: Counter overflow error");
// TODO: handle counters
}
if (status & BIT_INTERRUPTMASK_RST) {
dmesgln("NE2000NetworkAdapter: NIC requires reset due to packet reception overflow");
// TODO: proper reset procedure
reset();
}
receive();
m_wait_queue.wake_all();
out8(REG_RW_INTERRUPTSTATUS, status);
}
int NE2000NetworkAdapter::ram_test()
{
IOAddress io(PCI::get_BAR0(pci_address()) & ~3);
int errors = 0;
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_WTS);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_BOS | BIT_DATACONFIGURATION_WTS);
#else
# error Unknown byte order
#endif
out8(REG_WR_REMOTEBYTECOUNT0, 0x00);
out8(REG_WR_REMOTEBYTECOUNT1, 0x00);
out8(REG_WR_RECEIVECONFIGURATION, BIT_RECEIVECONFIGURATION_MON);
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_START);
auto buffer = ByteBuffer::create_uninitialized(NE2K_RAM_SIZE);
const u8 patterns[3] = { 0x5a, 0xff, 0x00 };
for (int i = 0; i < 3; ++i) {
for (size_t j = 0; j < buffer.size(); ++j)
buffer[j] = patterns[i];
rdma_write(NE2K_RAM_BEGIN, buffer);
rdma_read(NE2K_RAM_BEGIN, buffer);
for (size_t j = 0; j < buffer.size(); ++j) {
if (buffer[j] != patterns[i]) {
if (errors < 16)
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Bad adapter RAM @ {} expected={} got={}", PhysicalAddress(NE2K_RAM_BEGIN + j), patterns[i], buffer[j]);
else if (errors == 16)
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Too many RAM errors, silencing further output");
errors++;
}
}
}
return errors;
}
void NE2000NetworkAdapter::reset()
{
const u8 interrupt_mask = BIT_INTERRUPTMASK_PRX | BIT_INTERRUPTMASK_PTX | BIT_INTERRUPTMASK_RXE | BIT_INTERRUPTMASK_TXE | BIT_INTERRUPTMASK_OVW | BIT_INTERRUPTMASK_CNT;
u8 prom[32];
// Taken from DP8390D's datasheet section 11.0, "Initialization Procedures"
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_WTS);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_BOS | BIT_DATACONFIGURATION_WTS);
#else
# error Unknown byte order
#endif
out8(REG_WR_REMOTEBYTECOUNT0, 0x00);
out8(REG_WR_REMOTEBYTECOUNT1, 0x00);
out8(REG_WR_RECEIVECONFIGURATION, BIT_RECEIVECONFIGURATION_AB | BIT_RECEIVECONFIGURATION_AR);
out8(REG_WR_TRANSMITCONFIGURATION, BIT_WR_TRANSMITCONFIGURATION_LOOPBACK);
m_ring_read_ptr = NE2K_RAM_RECV_BEGIN >> 8;
out8(REG_WR_PAGESTART, NE2K_RAM_RECV_BEGIN >> 8);
out8(REG_RW_BOUNDARY, NE2K_RAM_RECV_BEGIN >> 8);
out8(REG_WR_PAGESTOP, NE2K_RAM_RECV_END >> 8);
out8(REG_RW_INTERRUPTSTATUS, 0xff);
out8(REG_WR_INTERRUPTMASK, interrupt_mask);
rdma_read(0, Bytes(prom, sizeof(prom)));
for (int i = 0; i < 6; i++) {
m_mac_address[i] = prom[i * 2];
}
out8(REG_RW_COMMAND, BIT_COMMAND_PAGE1 | BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
for (int i = 0; i < 6; i++) {
out8(REG_RW_PHYSICALADDRESS0 + i, m_mac_address[i]);
}
out8(REG_RW_CURRENT, NE2K_RAM_RECV_BEGIN >> 8);
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_START);
out8(REG_WR_TRANSMITCONFIGURATION, 0xe0);
}
void NE2000NetworkAdapter::rdma_read(size_t address, Bytes payload)
{
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: DMA read @ {} length={}", PhysicalAddress(address), payload.size());
u8 command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_PAGE_FIELD | BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_ABORT);
out8(REG_RW_INTERRUPTSTATUS, BIT_INTERRUPTMASK_RDC);
out8(REG_WR_REMOTEBYTECOUNT0, payload.size());
out8(REG_WR_REMOTEBYTECOUNT1, payload.size() >> 8);
out8(REG_WR_REMOTESTARTADDRESS0, address);
out8(REG_WR_REMOTESTARTADDRESS1, address >> 8);
command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_READ);
for (size_t i = 0; i < payload.size(); i += 2) {
u16 data = in16(REG_RW_IOPORT);
payload[i] = data;
if (i != payload.size() - 1)
payload[i + 1] = data >> 8;
}
while (!(in8(REG_RW_INTERRUPTSTATUS) & BIT_INTERRUPTMASK_RDC))
;
}
void NE2000NetworkAdapter::rdma_write(size_t address, ReadonlyBytes payload)
{
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: DMA write @ {} length={}", PhysicalAddress(address), payload.size());
u8 command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_PAGE_FIELD | BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_ABORT);
out8(REG_RW_INTERRUPTSTATUS, BIT_INTERRUPTMASK_RDC);
out8(REG_WR_REMOTEBYTECOUNT0, payload.size());
out8(REG_WR_REMOTEBYTECOUNT1, payload.size() >> 8);
out8(REG_WR_REMOTESTARTADDRESS0, address);
out8(REG_WR_REMOTESTARTADDRESS1, address >> 8);
command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_WRITE);
for (size_t i = 0; i < payload.size(); i += 2) {
u16 data = payload[i];
if (i != payload.size() - 1)
data |= payload[i + 1] << 8;
out16(REG_RW_IOPORT, data);
}
while (!(in8(REG_RW_INTERRUPTSTATUS) & BIT_INTERRUPTMASK_RDC))
;
}
void NE2000NetworkAdapter::send_raw(ReadonlyBytes payload)
{
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Sending packet length={}", payload.size());
if (payload.size() > NE2K_RAM_SEND_SIZE) {
dmesgln("NE2000NetworkAdapter: Packet to send was too big; discarding");
return;
}
while (in8(REG_RW_COMMAND) & BIT_COMMAND_TXP)
m_wait_queue.wait_forever("NE2000NetworkAdapter");
disable_irq();
size_t packet_size = payload.size();
if (packet_size < 64)
packet_size = 64;
rdma_write(NE2K_RAM_SEND_BEGIN, payload);
out8(REG_WR_TRANSMITPAGE, NE2K_RAM_SEND_BEGIN >> 8);
out8(REG_WR_TRANSMITBYTECOUNT0, packet_size);
out8(REG_WR_TRANSMITBYTECOUNT1, packet_size >> 8);
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_TXP | BIT_COMMAND_START);
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Packet submitted for transmission");
enable_irq();
}
void NE2000NetworkAdapter::receive()
{
while (true) {
out8(REG_RW_COMMAND, BIT_COMMAND_PAGE1 | in8(REG_RW_COMMAND));
u8 current = in8(REG_RW_CURRENT);
out8(REG_RW_COMMAND, in8(REG_RW_COMMAND) & ~BIT_COMMAND_PAGE_FIELD);
if (m_ring_read_ptr == current)
break;
size_t header_address = m_ring_read_ptr << 8;
received_packet_header header;
rdma_read(header_address, Bytes(reinterpret_cast<u8*>(&header), sizeof(header)));
bool packet_ok = header.status & BIT_RECEIVESTATUS_PRX;
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Packet received {} length={}", (packet_ok ? "intact" : "damaged"), header.length);
if (packet_ok) {
auto packet = ByteBuffer::create_uninitialized(sizeof(received_packet_header) + header.length);
int bytes_left = packet.size();
int current_offset = 0;
int ring_offset = header_address;
while (bytes_left > 0) {
int copy_size = min(bytes_left, NE2K_PAGE_SIZE);
rdma_read(ring_offset, packet.span().slice(current_offset, copy_size));
current_offset += copy_size;
ring_offset += copy_size;
bytes_left -= copy_size;
if (ring_offset == NE2K_RAM_RECV_END)
ring_offset = NE2K_RAM_RECV_BEGIN;
}
did_receive(packet.span().slice(sizeof(received_packet_header)));
}
if (header.next_packet_page == NE2K_RAM_RECV_BEGIN)
out8(REG_RW_BOUNDARY, (NE2K_RAM_RECV_END >> 8) - 1);
else
out8(REG_RW_BOUNDARY, header.next_packet_page - 1);
m_ring_read_ptr = header.next_packet_page;
}
}
void NE2000NetworkAdapter::out8(u16 address, u8 data)
{
m_io_base.offset(address).out(data);
}
void NE2000NetworkAdapter::out16(u16 address, u16 data)
{
m_io_base.offset(address).out(data);
}
u8 NE2000NetworkAdapter::in8(u16 address)
{
u8 data = m_io_base.offset(address).in<u8>();
return data;
}
u16 NE2000NetworkAdapter::in16(u16 address)
{
return m_io_base.offset(address).in<u16>();
}
}