ladybird/Kernel/Thread.cpp
Tom 419703a1f2 Kernel: Fix checking BlockResult
We now have BlockResult::WokeNormally and BlockResult::NotBlocked,
both of which indicate no error. We can no longer just check for
BlockResult::WokeNormally and assume anything else must be an
interruption.
2020-07-07 15:46:58 +02:00

1013 lines
32 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Demangle.h>
#include <AK/StringBuilder.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Profiling.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Thread.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/TimerQueue.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/ProcessPagingScope.h>
#include <LibC/signal_numbers.h>
#include <LibELF/Loader.h>
//#define SIGNAL_DEBUG
//#define THREAD_DEBUG
namespace Kernel {
HashTable<Thread*>& thread_table()
{
ASSERT_INTERRUPTS_DISABLED();
static HashTable<Thread*>* table;
if (!table)
table = new HashTable<Thread*>;
return *table;
}
Thread::Thread(Process& process)
: m_process(process)
, m_name(process.name())
{
if (m_process.m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel) == 0) {
// First thread gets TID == PID
m_tid = process.pid();
} else {
m_tid = Process::allocate_pid();
}
#ifdef THREAD_DEBUG
dbg() << "Created new thread " << process.name() << "(" << process.pid() << ":" << m_tid << ")";
#endif
set_default_signal_dispositions();
m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
reset_fpu_state();
memset(&m_tss, 0, sizeof(m_tss));
m_tss.iomapbase = sizeof(TSS32);
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
if (m_process.is_ring0()) {
m_tss.cs = GDT_SELECTOR_CODE0;
m_tss.ds = GDT_SELECTOR_DATA0;
m_tss.es = GDT_SELECTOR_DATA0;
m_tss.fs = GDT_SELECTOR_PROC;
m_tss.ss = GDT_SELECTOR_DATA0;
m_tss.gs = 0;
} else {
m_tss.cs = GDT_SELECTOR_CODE3 | 3;
m_tss.ds = GDT_SELECTOR_DATA3 | 3;
m_tss.es = GDT_SELECTOR_DATA3 | 3;
m_tss.fs = GDT_SELECTOR_DATA3 | 3;
m_tss.ss = GDT_SELECTOR_DATA3 | 3;
m_tss.gs = GDT_SELECTOR_TLS | 3;
}
m_tss.cr3 = m_process.page_directory().cr3();
m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid), Region::Access::Read | Region::Access::Write, false, true);
m_kernel_stack_region->set_stack(true);
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
if (m_process.is_ring0()) {
m_tss.esp = m_tss.esp0 = m_kernel_stack_top;
} else {
// Ring 3 processes get a separate stack for ring 0.
// The ring 3 stack will be assigned by exec().
m_tss.ss0 = GDT_SELECTOR_DATA0;
m_tss.esp0 = m_kernel_stack_top;
}
if (m_process.pid() != 0) {
InterruptDisabler disabler;
thread_table().set(this);
Scheduler::init_thread(*this);
}
}
Thread::~Thread()
{
kfree_aligned(m_fpu_state);
{
InterruptDisabler disabler;
thread_table().remove(this);
}
auto thread_cnt_before = m_process.m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
ASSERT(thread_cnt_before != 0);
}
void Thread::unblock()
{
m_blocker = nullptr;
if (Thread::current() == this) {
if (m_should_die)
set_state(Thread::Dying);
else
set_state(Thread::Running);
return;
}
ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
if (m_should_die)
set_state(Thread::Dying);
else
set_state(Thread::Runnable);
}
void Thread::set_should_die()
{
if (m_should_die) {
#ifdef THREAD_DEBUG
dbg() << *this << " Should already die";
#endif
return;
}
ScopedCritical critical;
// Remember that we should die instead of returning to
// the userspace.
m_should_die = true;
if (is_blocked()) {
ASSERT(in_kernel());
ASSERT(m_blocker != nullptr);
// We're blocked in the kernel.
m_blocker->set_interrupted_by_death();
unblock();
} else if (!in_kernel()) {
// We're executing in userspace (and we're clearly
// not the current thread). No need to unwind, so
// set the state to dying right away. This also
// makes sure we won't be scheduled anymore.
set_state(Thread::State::Dying);
}
}
void Thread::die_if_needed()
{
ASSERT(Thread::current() == this);
if (!m_should_die)
return;
unlock_process_if_locked();
ScopedCritical critical;
set_state(Thread::State::Dying);
// Flag a context switch. Because we're in a critical section,
// Scheduler::yield will actually only mark a pending scontext switch
// Simply leaving the critical section would not necessarily trigger
// a switch.
Scheduler::yield();
// Now leave the critical section so that we can also trigger the
// actual context switch
u32 prev_flags;
Processor::current().clear_critical(prev_flags, false);
dbg() << "die_if_needed returned form clear_critical!!! in irq: " << Processor::current().in_irq();
// We should never get here, but the scoped scheduler lock
// will be released by Scheduler::context_switch again
ASSERT_NOT_REACHED();
}
void Thread::yield_without_holding_big_lock()
{
bool did_unlock = unlock_process_if_locked();
Scheduler::yield();
relock_process(did_unlock);
}
bool Thread::unlock_process_if_locked()
{
return process().big_lock().force_unlock_if_locked();
}
void Thread::relock_process(bool did_unlock)
{
if (did_unlock)
process().big_lock().lock();
}
u64 Thread::sleep(u32 ticks)
{
ASSERT(state() == Thread::Running);
u64 wakeup_time = g_uptime + ticks;
auto ret = Thread::current()->block<Thread::SleepBlocker>(wakeup_time);
if (wakeup_time > g_uptime) {
ASSERT(ret.was_interrupted());
}
return wakeup_time;
}
u64 Thread::sleep_until(u64 wakeup_time)
{
ASSERT(state() == Thread::Running);
auto ret = Thread::current()->block<Thread::SleepBlocker>(wakeup_time);
if (wakeup_time > g_uptime)
ASSERT(ret.was_interrupted());
return wakeup_time;
}
const char* Thread::state_string() const
{
switch (state()) {
case Thread::Invalid:
return "Invalid";
case Thread::Runnable:
return "Runnable";
case Thread::Running:
return "Running";
case Thread::Dying:
return "Dying";
case Thread::Dead:
return "Dead";
case Thread::Stopped:
return "Stopped";
case Thread::Skip1SchedulerPass:
return "Skip1";
case Thread::Skip0SchedulerPasses:
return "Skip0";
case Thread::Queued:
return "Queued";
case Thread::Blocked:
ASSERT(m_blocker != nullptr);
return m_blocker->state_string();
}
klog() << "Thread::state_string(): Invalid state: " << state();
ASSERT_NOT_REACHED();
return nullptr;
}
void Thread::finalize()
{
ASSERT(Thread::current() == g_finalizer);
ASSERT(Thread::current() != this);
#ifdef THREAD_DEBUG
dbg() << "Finalizing thread " << *this;
#endif
set_state(Thread::State::Dead);
if (m_joiner) {
ASSERT(m_joiner->m_joinee == this);
static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_joinee_exit_value(m_exit_value);
static_cast<JoinBlocker*>(m_joiner->m_blocker)->set_interrupted_by_death();
m_joiner->m_joinee = nullptr;
// NOTE: We clear the joiner pointer here as well, to be tidy.
m_joiner = nullptr;
}
if (m_dump_backtrace_on_finalization)
dbg() << backtrace_impl();
}
void Thread::finalize_dying_threads()
{
ASSERT(Thread::current() == g_finalizer);
Vector<Thread*, 32> dying_threads;
{
ScopedSpinLock lock(g_scheduler_lock);
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
if (thread.is_finalizable())
dying_threads.append(&thread);
return IterationDecision::Continue;
});
}
for (auto* thread : dying_threads) {
auto& process = thread->process();
thread->finalize();
delete thread;
if (process.m_thread_count.load(AK::MemoryOrder::memory_order_consume) == 0)
process.finalize();
}
}
bool Thread::tick()
{
++m_ticks;
if (tss().cs & 3)
++m_process.m_ticks_in_user;
else
++m_process.m_ticks_in_kernel;
return --m_ticks_left;
}
void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
{
ASSERT(signal < 32);
InterruptDisabler disabler;
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
if (should_ignore_signal(signal)) {
#ifdef SIGNAL_DEBUG
dbg() << "Signal " << signal << " was ignored by " << process();
#endif
return;
}
#ifdef SIGNAL_DEBUG
if (sender)
dbg() << "Signal: " << *sender << " sent " << signal << " to " << process();
else
dbg() << "Signal: Kernel sent " << signal << " to " << process();
#endif
ScopedSpinLock lock(g_scheduler_lock);
m_pending_signals |= 1 << (signal - 1);
}
// Certain exceptions, such as SIGSEGV and SIGILL, put a
// thread into a state where the signal handler must be
// invoked immediately, otherwise it will continue to fault.
// This function should be used in an exception handler to
// ensure that when the thread resumes, it's executing in
// the appropriate signal handler.
void Thread::send_urgent_signal_to_self(u8 signal)
{
ASSERT(Thread::current() == this);
ScopedSpinLock lock(g_scheduler_lock);
if (dispatch_signal(signal) == ShouldUnblockThread::No)
Scheduler::yield();
}
ShouldUnblockThread Thread::dispatch_one_pending_signal()
{
ASSERT_INTERRUPTS_DISABLED();
u32 signal_candidates = m_pending_signals & ~m_signal_mask;
ASSERT(signal_candidates);
u8 signal = 1;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << (signal - 1))) {
break;
}
}
return dispatch_signal(signal);
}
enum class DefaultSignalAction {
Terminate,
Ignore,
DumpCore,
Stop,
Continue,
};
DefaultSignalAction default_signal_action(u8 signal)
{
ASSERT(signal && signal < NSIG);
switch (signal) {
case SIGHUP:
case SIGINT:
case SIGKILL:
case SIGPIPE:
case SIGALRM:
case SIGUSR1:
case SIGUSR2:
case SIGVTALRM:
case SIGSTKFLT:
case SIGIO:
case SIGPROF:
case SIGTERM:
case SIGPWR:
return DefaultSignalAction::Terminate;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
return DefaultSignalAction::Ignore;
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGSEGV:
case SIGXCPU:
case SIGXFSZ:
case SIGSYS:
return DefaultSignalAction::DumpCore;
case SIGCONT:
return DefaultSignalAction::Continue;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
return DefaultSignalAction::Stop;
}
ASSERT_NOT_REACHED();
}
bool Thread::should_ignore_signal(u8 signal) const
{
ASSERT(signal < 32);
auto& action = m_signal_action_data[signal];
if (action.handler_or_sigaction.is_null())
return default_signal_action(signal) == DefaultSignalAction::Ignore;
if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
return true;
return false;
}
bool Thread::has_signal_handler(u8 signal) const
{
ASSERT(signal < 32);
auto& action = m_signal_action_data[signal];
return !action.handler_or_sigaction.is_null();
}
static void push_value_on_user_stack(u32* stack, u32 data)
{
*stack -= 4;
copy_to_user((u32*)*stack, &data);
}
ShouldUnblockThread Thread::dispatch_signal(u8 signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.is_locked());
ASSERT(signal > 0 && signal <= 32);
ASSERT(!process().is_ring0());
#ifdef SIGNAL_DEBUG
klog() << "dispatch_signal <- " << signal;
#endif
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
// Mark this signal as handled.
m_pending_signals &= ~(1 << (signal - 1));
if (signal == SIGSTOP) {
if (!is_stopped()) {
m_stop_signal = SIGSTOP;
set_state(State::Stopped);
}
return ShouldUnblockThread::No;
}
if (signal == SIGCONT && is_stopped()) {
ASSERT(m_stop_state != State::Invalid);
set_state(m_stop_state);
m_stop_state = State::Invalid;
// make sure SemiPermanentBlocker is unblocked
if (m_state != Thread::Runnable && m_state != Thread::Running
&& m_blocker && m_blocker->is_reason_signal())
unblock();
}
else {
auto* thread_tracer = tracer();
if (thread_tracer != nullptr) {
// when a thread is traced, it should be stopped whenever it receives a signal
// the tracer is notified of this by using waitpid()
// only "pending signals" from the tracer are sent to the tracee
if (!thread_tracer->has_pending_signal(signal)) {
m_stop_signal = signal;
// make sure SemiPermanentBlocker is unblocked
if (m_blocker && m_blocker->is_reason_signal())
unblock();
set_state(Stopped);
return ShouldUnblockThread::No;
}
thread_tracer->unset_signal(signal);
}
}
auto handler_vaddr = action.handler_or_sigaction;
if (handler_vaddr.is_null()) {
switch (default_signal_action(signal)) {
case DefaultSignalAction::Stop:
m_stop_signal = signal;
set_state(Stopped);
return ShouldUnblockThread::No;
case DefaultSignalAction::DumpCore:
process().for_each_thread([](auto& thread) {
thread.set_dump_backtrace_on_finalization();
return IterationDecision::Continue;
});
[[fallthrough]];
case DefaultSignalAction::Terminate:
m_process.terminate_due_to_signal(signal);
return ShouldUnblockThread::No;
case DefaultSignalAction::Ignore:
ASSERT_NOT_REACHED();
case DefaultSignalAction::Continue:
return ShouldUnblockThread::Yes;
}
ASSERT_NOT_REACHED();
}
if (handler_vaddr.as_ptr() == SIG_IGN) {
#ifdef SIGNAL_DEBUG
klog() << "ignored signal " << signal;
#endif
return ShouldUnblockThread::Yes;
}
ProcessPagingScope paging_scope(m_process);
u32 old_signal_mask = m_signal_mask;
u32 new_signal_mask = action.mask;
if (action.flags & SA_NODEFER)
new_signal_mask &= ~(1 << (signal - 1));
else
new_signal_mask |= 1 << (signal - 1);
m_signal_mask |= new_signal_mask;
auto setup_stack = [&]<typename ThreadState>(ThreadState state, u32* stack) {
u32 old_esp = *stack;
u32 ret_eip = state.eip;
u32 ret_eflags = state.eflags;
#ifdef SIGNAL_DEBUG
klog() << "signal: setting up user stack to return to eip: " << String::format("%p", ret_eip) << " esp: " << String::format("%p", old_esp);
#endif
// Align the stack to 16 bytes.
// Note that we push 56 bytes (4 * 14) on to the stack,
// so we need to account for this here.
u32 stack_alignment = (*stack - 56) % 16;
*stack -= stack_alignment;
push_value_on_user_stack(stack, ret_eflags);
push_value_on_user_stack(stack, ret_eip);
push_value_on_user_stack(stack, state.eax);
push_value_on_user_stack(stack, state.ecx);
push_value_on_user_stack(stack, state.edx);
push_value_on_user_stack(stack, state.ebx);
push_value_on_user_stack(stack, old_esp);
push_value_on_user_stack(stack, state.ebp);
push_value_on_user_stack(stack, state.esi);
push_value_on_user_stack(stack, state.edi);
// PUSH old_signal_mask
push_value_on_user_stack(stack, old_signal_mask);
push_value_on_user_stack(stack, signal);
push_value_on_user_stack(stack, handler_vaddr.get());
push_value_on_user_stack(stack, 0); //push fake return address
ASSERT((*stack % 16) == 0);
};
// We now place the thread state on the userspace stack.
// Note that when we are in the kernel (ie. blocking) we cannot use the
// tss, as that will contain kernel state; instead, we use a RegisterState.
// Conversely, when the thread isn't blocking the RegisterState may not be
// valid (fork, exec etc) but the tss will, so we use that instead.
if (!in_kernel()) {
u32* stack = &m_tss.esp;
setup_stack(m_tss, stack);
m_tss.cs = GDT_SELECTOR_CODE3 | 3;
m_tss.ds = GDT_SELECTOR_DATA3 | 3;
m_tss.es = GDT_SELECTOR_DATA3 | 3;
m_tss.fs = GDT_SELECTOR_DATA3 | 3;
m_tss.gs = GDT_SELECTOR_TLS | 3;
m_tss.eip = g_return_to_ring3_from_signal_trampoline.get();
// FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
set_state(Skip1SchedulerPass);
} else {
auto& regs = get_register_dump_from_stack();
u32* stack = &regs.userspace_esp;
setup_stack(regs, stack);
regs.eip = g_return_to_ring3_from_signal_trampoline.get();
}
#ifdef SIGNAL_DEBUG
klog() << "signal: Okay, {" << state_string() << "} has been primed with signal handler " << String::format("%w", m_tss.cs) << ":" << String::format("%x", m_tss.eip);
#endif
return ShouldUnblockThread::Yes;
}
void Thread::set_default_signal_dispositions()
{
// FIXME: Set up all the right default actions. See signal(7).
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress(SIG_IGN);
m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress(SIG_IGN);
}
void Thread::push_value_on_stack(FlatPtr value)
{
m_tss.esp -= 4;
FlatPtr* stack_ptr = (FlatPtr*)m_tss.esp;
copy_to_user(stack_ptr, &value);
}
RegisterState& Thread::get_register_dump_from_stack()
{
// The userspace registers should be stored at the top of the stack
// We have to subtract 2 because the processor decrements the kernel
// stack before pushing the args.
return *(RegisterState*)(kernel_stack_top() - sizeof(RegisterState));
}
u32 Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment, Vector<AuxiliaryValue> auxv)
{
auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
ASSERT(region);
region->set_stack(true);
u32 new_esp = region->vaddr().offset(default_userspace_stack_size).get();
// FIXME: This is weird, we put the argument contents at the base of the stack,
// and the argument pointers at the top? Why?
char* stack_base = (char*)region->vaddr().get();
int argc = arguments.size();
char** argv = (char**)stack_base;
char** env = argv + arguments.size() + 1;
auxv_t* auxvp = (auxv_t*)((char*)(env + environment.size() + 1));
char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1) + (sizeof(auxv_t) * auxv.size()));
SmapDisabler disabler;
for (size_t i = 0; i < arguments.size(); ++i) {
argv[i] = bufptr;
memcpy(bufptr, arguments[i].characters(), arguments[i].length());
bufptr += arguments[i].length();
*(bufptr++) = '\0';
}
argv[arguments.size()] = nullptr;
for (size_t i = 0; i < environment.size(); ++i) {
env[i] = bufptr;
memcpy(bufptr, environment[i].characters(), environment[i].length());
bufptr += environment[i].length();
*(bufptr++) = '\0';
}
env[environment.size()] = nullptr;
for (size_t i = 0; i < auxv.size(); ++i) {
*auxvp = auxv[i].auxv;
if (!auxv[i].optional_string.is_empty()) {
auxvp->a_un.a_ptr = bufptr;
memcpy(bufptr, auxv[i].optional_string.characters(), auxv[i].optional_string.length());
bufptr += auxv[i].optional_string.length();
*(bufptr++) = '\0';
}
++auxvp;
}
auto push_on_new_stack = [&new_esp](u32 value) {
new_esp -= 4;
u32* stack_ptr = (u32*)new_esp;
*stack_ptr = value;
};
// NOTE: The stack needs to be 16-byte aligned.
push_on_new_stack((FlatPtr)env);
push_on_new_stack((FlatPtr)argv);
push_on_new_stack((FlatPtr)argc);
push_on_new_stack(0);
ASSERT((FlatPtr)new_esp % 16 == 0);
return new_esp;
}
Thread* Thread::clone(Process& process)
{
auto* clone = new Thread(process);
memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
clone->m_signal_mask = m_signal_mask;
memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
clone->m_thread_specific_data = m_thread_specific_data;
clone->m_thread_specific_region_size = m_thread_specific_region_size;
return clone;
}
Vector<Thread*> Thread::all_threads()
{
Vector<Thread*> threads;
InterruptDisabler disabler;
threads.ensure_capacity(thread_table().size());
for (auto* thread : thread_table())
threads.unchecked_append(thread);
return threads;
}
bool Thread::is_thread(void* ptr)
{
ASSERT_INTERRUPTS_DISABLED();
return thread_table().contains((Thread*)ptr);
}
void Thread::set_state(State new_state)
{
ScopedSpinLock lock(g_scheduler_lock);
if (new_state == m_state)
return;
if (new_state == Blocked) {
// we should always have a Blocker while blocked
ASSERT(m_blocker != nullptr);
}
if (new_state == Stopped) {
m_stop_state = m_state;
}
m_state = new_state;
#ifdef THREAD_DEBUG
dbg() << "Set Thread " << *this << " state to " << state_string();
#endif
if (m_process.pid() != 0) {
Scheduler::update_state_for_thread(*this);
}
if (m_state == Dying && this != Thread::current() && is_finalizable()) {
// Some other thread set this thread to Dying, notify the
// finalizer right away as it can be cleaned up now
Scheduler::notify_finalizer();
}
}
String Thread::backtrace(ProcessInspectionHandle&)
{
return backtrace_impl();
}
struct RecognizedSymbol {
u32 address;
const KernelSymbol* symbol { nullptr };
};
static bool symbolicate(const RecognizedSymbol& symbol, const Process& process, StringBuilder& builder, Process::ELFBundle* elf_bundle)
{
if (!symbol.address)
return false;
bool mask_kernel_addresses = !process.is_superuser();
if (!symbol.symbol) {
if (!is_user_address(VirtualAddress(symbol.address))) {
builder.append("0xdeadc0de\n");
} else {
if (elf_bundle && elf_bundle->elf_loader->has_symbols())
builder.appendf("%p %s\n", symbol.address, elf_bundle->elf_loader->symbolicate(symbol.address).characters());
else
builder.appendf("%p\n", symbol.address);
}
return true;
}
unsigned offset = symbol.address - symbol.symbol->address;
if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
builder.appendf("%p\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address);
} else {
builder.appendf("%p %s +%u\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address, demangle(symbol.symbol->name).characters(), offset);
}
return true;
}
String Thread::backtrace_impl()
{
Vector<RecognizedSymbol, 128> recognized_symbols;
auto& process = const_cast<Process&>(this->process());
auto elf_bundle = process.elf_bundle();
ProcessPagingScope paging_scope(process);
// To prevent a context switch involving this thread, which may happen
// on another processor, we need to acquire the scheduler lock while
// walking the stack
{
ScopedSpinLock lock(g_scheduler_lock);
FlatPtr stack_ptr, eip;
if (Processor::get_context_frame_ptr(*this, stack_ptr, eip)) {
recognized_symbols.append({ eip, symbolicate_kernel_address(eip) });
for (;;) {
if (!process.validate_read_from_kernel(VirtualAddress(stack_ptr), sizeof(void*) * 2))
break;
FlatPtr retaddr;
if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]);
recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr);
} else {
memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr));
recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr));
}
}
}
}
StringBuilder builder;
for (auto& symbol : recognized_symbols) {
if (!symbolicate(symbol, process, builder, elf_bundle.ptr()))
break;
}
return builder.to_string();
}
Vector<FlatPtr> Thread::raw_backtrace(FlatPtr ebp, FlatPtr eip) const
{
InterruptDisabler disabler;
auto& process = const_cast<Process&>(this->process());
ProcessPagingScope paging_scope(process);
Vector<FlatPtr, Profiling::max_stack_frame_count> backtrace;
backtrace.append(eip);
for (FlatPtr* stack_ptr = (FlatPtr*)ebp; process.validate_read_from_kernel(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2) && MM.can_read_without_faulting(process, VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2); stack_ptr = (FlatPtr*)*stack_ptr) {
FlatPtr retaddr = stack_ptr[1];
backtrace.append(retaddr);
if (backtrace.size() == Profiling::max_stack_frame_count)
break;
}
return backtrace;
}
void Thread::make_thread_specific_region(Badge<Process>)
{
size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
m_thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
auto* region = process().allocate_region({}, m_thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
SmapDisabler disabler;
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
m_thread_specific_data = VirtualAddress(thread_specific_data);
thread_specific_data->self = thread_specific_data;
if (process().m_master_tls_size)
memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
}
const LogStream& operator<<(const LogStream& stream, const Thread& value)
{
return stream << value.process().name() << "(" << value.pid() << ":" << value.tid() << ")";
}
Thread::BlockResult Thread::wait_on(WaitQueue& queue, const char* reason, timeval* timeout, Atomic<bool>* lock, Thread* beneficiary)
{
TimerId timer_id {};
bool did_unlock;
{
ScopedCritical critical;
// We need to be in a critical section *and* then also acquire the
// scheduler lock. The only way acquiring the scheduler lock could
// block us is if another core were to be holding it, in which case
// we need to wait until the scheduler lock is released again
{
ScopedSpinLock sched_lock(g_scheduler_lock);
if (!queue.enqueue(*Thread::current())) {
// The WaitQueue was already requested to wake someone when
// nobody was waiting. So return right away as we shouldn't
// be waiting
// The API contract guarantees we return with interrupts enabled,
// regardless of how we got called
critical.set_interrupt_flag_on_destruction(true);
return BlockResult::NotBlocked;
}
did_unlock = unlock_process_if_locked();
if (lock)
*lock = false;
set_state(State::Queued);
m_wait_reason = reason;
if (timeout) {
timer_id = TimerQueue::the().add_timer(*timeout, [&]() {
ScopedSpinLock sched_lock(g_scheduler_lock);
wake_from_queue();
});
}
// Yield and wait for the queue to wake us up again.
if (beneficiary)
Scheduler::donate_to(beneficiary, reason);
else
Scheduler::yield();
}
// Clearing the critical section may trigger the context switch
// flagged by calling Scheduler::donate_to or Scheduler::yield
// above. We have to do it this way because we intentionally
// leave the critical section here to be able to switch contexts.
u32 prev_flags;
u32 prev_crit = Processor::current().clear_critical(prev_flags, true);
// We've unblocked, relock the process if needed and carry on.
relock_process(did_unlock);
// NOTE: We may be on a differenct CPU now!
Processor::current().restore_critical(prev_crit, prev_flags);
// This looks counter productive, but we may not actually leave
// the critical section we just restored. It depends on whether
// we were in one while being called.
}
BlockResult result(BlockResult::WokeNormally);
{
// To be able to look at m_wait_queue_node we once again need the
// scheduler lock, which is held when we insert into the queue
ScopedSpinLock sched_lock(g_scheduler_lock);
if (m_wait_queue_node.is_in_list())
result = BlockResult::InterruptedByTimeout;
// Make sure we cancel the timer if woke normally.
if (timeout && !result.was_interrupted())
TimerQueue::the().cancel_timer(timer_id);
}
// The API contract guarantees we return with interrupts enabled,
// regardless of how we got called
sti();
return result;
}
void Thread::wake_from_queue()
{
ScopedSpinLock lock(g_scheduler_lock);
ASSERT(state() == State::Queued);
m_wait_reason = nullptr;
if (this != Thread::current())
set_state(State::Runnable);
else
set_state(State::Running);
}
Thread* Thread::from_tid(int tid)
{
InterruptDisabler disabler;
Thread* found_thread = nullptr;
Thread::for_each([&](auto& thread) {
if (thread.tid() == tid) {
found_thread = &thread;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
return found_thread;
}
void Thread::reset_fpu_state()
{
memcpy(m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState));
}
void Thread::start_tracing_from(pid_t tracer)
{
m_tracer = ThreadTracer::create(tracer);
}
void Thread::stop_tracing()
{
m_tracer = nullptr;
}
void Thread::tracer_trap(const RegisterState& regs)
{
ASSERT(m_tracer.ptr());
m_tracer->set_regs(regs);
send_urgent_signal_to_self(SIGTRAP);
}
const Thread::Blocker& Thread::blocker() const
{
ASSERT(m_blocker);
return *m_blocker;
}
}