mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-26 09:30:24 +00:00
191 lines
7.3 KiB
C++
191 lines
7.3 KiB
C++
/*
|
|
* Copyright (c) 2020, Peter Elliott <pelliott@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/ByteString.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/StringView.h>
|
|
#include <LibCrypto/Cipher/Mode/Mode.h>
|
|
|
|
namespace Crypto::Cipher {
|
|
|
|
/*
|
|
* Heads up: CTR is a *family* of modes, because the "counter" function is
|
|
* implementation-defined. This makes interoperability a pain in the neurons.
|
|
* Here are several contradicting(!) interpretations:
|
|
*
|
|
* "The counter can be *any function* which produces a sequence which is
|
|
* guaranteed not to repeat for a long time, although an actual increment-by-one
|
|
* counter is the simplest and most popular."
|
|
* The illustrations show that first increment should happen *after* the first
|
|
* round. I call this variant BIGINT_INCR_0.
|
|
* The AESAVS goes a step further and requires only that "counters" do not
|
|
* repeat, leaving the method of counting completely open.
|
|
* See: https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_(CTR)
|
|
* See: https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/aes/aesavs.pdf
|
|
*
|
|
* BIGINT_INCR_0 is the behavior of the OpenSSL command "openssl enc -aes-128-ctr",
|
|
* and the behavior of CRYPTO_ctr128_encrypt(). OpenSSL is not alone in the
|
|
* assumption that BIGINT_INCR_0 is all there is; even some NIST
|
|
* specification/survey(?) doesn't consider counting any other way.
|
|
* See: https://github.com/openssl/openssl/blob/33388b44b67145af2181b1e9528c381c8ea0d1b6/crypto/modes/ctr128.c#L71
|
|
* See: http://www.cryptogrium.com/aes-ctr.html
|
|
* See: https://web.archive.org/web/20150226072817/http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ctr/ctr-spec.pdf
|
|
*
|
|
* "[T]he successive counter blocks are derived by applying an incrementing
|
|
* function."
|
|
* It defines a *family* of functions called "Standard Incrementing Function"
|
|
* which only increment the lower-m bits, for some number 0<m<=blocksize.
|
|
* The included test vectors suggest that the first increment should happen
|
|
* *after* the first round. I call this INT32_INCR_0, or in general INTm_INCR_0.
|
|
* This in particular is the behavior of CRYPTO_ctr128_encrypt_ctr32() in OpenSSL.
|
|
* See: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
|
|
* See: https://github.com/openssl/openssl/blob/33388b44b67145af2181b1e9528c381c8ea0d1b6/crypto/modes/ctr128.c#L147
|
|
*
|
|
* The python package "cryptography" and RFC 3686 (which appears among the
|
|
* first online search results when searching for "AES CTR 128 test vector")
|
|
* share a peculiar interpretation of CTR mode: the counter is incremented *before*
|
|
* the first round. RFC 3686 does not consider any other interpretation. I call
|
|
* this variant BIGINT_INCR_1.
|
|
* See: https://tools.ietf.org/html/rfc3686.html#section-6
|
|
* See: https://cryptography.io/en/latest/development/test-vectors/#symmetric-ciphers
|
|
*
|
|
* And finally, because the method is left open, a different increment could be
|
|
* used, for example little endian, or host endian, or mixed endian. Or any crazy
|
|
* LSFR with sufficiently large period. That is the reason for the constant part
|
|
* "INCR" in the previous counters.
|
|
*
|
|
* Due to this plethora of mutually-incompatible counters,
|
|
* the method of counting should be a template parameter.
|
|
* This currently implements BIGINT_INCR_0, which means perfect
|
|
* interoperability with openssl. The test vectors from RFC 3686 just need to be
|
|
* incremented by 1.
|
|
* TODO: Implement other counters?
|
|
*/
|
|
|
|
struct IncrementInplace {
|
|
void operator()(Bytes& in) const
|
|
{
|
|
for (size_t i = in.size(); i > 0;) {
|
|
--i;
|
|
if (in[i] == (u8)-1) {
|
|
in[i] = 0;
|
|
} else {
|
|
in[i]++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename T, typename IncrementFunctionType = IncrementInplace>
|
|
class CTR : public Mode<T> {
|
|
public:
|
|
constexpr static size_t IVSizeInBits = 128;
|
|
|
|
virtual ~CTR() = default;
|
|
|
|
// Must intercept `Intent`, because AES must always be set to
|
|
// Encryption, even when decrypting AES-CTR.
|
|
// TODO: How to deal with ciphers that take different arguments?
|
|
// FIXME: Add back the default intent parameter once clang-11 is the default in GitHub Actions.
|
|
// Once added back, remove the parameter where it's constructed in get_random_bytes in Kernel/Security/Random.h.
|
|
template<typename KeyType, typename... Args>
|
|
explicit constexpr CTR(KeyType const& user_key, size_t key_bits, Intent, Args... args)
|
|
: Mode<T>(user_key, key_bits, Intent::Encryption, args...)
|
|
{
|
|
}
|
|
|
|
virtual ByteString class_name() const override
|
|
{
|
|
StringBuilder builder;
|
|
builder.append(this->cipher().class_name());
|
|
builder.append("_CTR"sv);
|
|
return builder.to_byte_string();
|
|
}
|
|
|
|
virtual size_t IV_length() const override
|
|
{
|
|
return IVSizeInBits / 8;
|
|
}
|
|
|
|
virtual void encrypt(ReadonlyBytes in, Bytes& out, ReadonlyBytes ivec = {}, Bytes* ivec_out = nullptr) override
|
|
{
|
|
// Our interpretation of "ivec" is what AES-CTR
|
|
// would define as nonce + IV + 4 zero bytes.
|
|
this->encrypt_or_stream(&in, out, ivec, ivec_out);
|
|
}
|
|
|
|
void key_stream(Bytes& out, Bytes const& ivec = {}, Bytes* ivec_out = nullptr)
|
|
{
|
|
this->encrypt_or_stream(nullptr, out, ivec, ivec_out);
|
|
}
|
|
|
|
virtual void decrypt(ReadonlyBytes in, Bytes& out, ReadonlyBytes ivec = {}) override
|
|
{
|
|
// XOR (and thus CTR) is the most symmetric mode.
|
|
this->encrypt(in, out, ivec);
|
|
}
|
|
|
|
private:
|
|
u8 m_ivec_storage[IVSizeInBits / 8];
|
|
typename T::BlockType m_cipher_block {};
|
|
|
|
protected:
|
|
constexpr static IncrementFunctionType increment {};
|
|
|
|
void encrypt_or_stream(ReadonlyBytes const* in, Bytes& out, ReadonlyBytes ivec, Bytes* ivec_out = nullptr)
|
|
{
|
|
size_t length;
|
|
if (in) {
|
|
VERIFY(in->size() <= out.size());
|
|
length = in->size();
|
|
if (length == 0)
|
|
return;
|
|
} else {
|
|
length = out.size();
|
|
}
|
|
|
|
auto& cipher = this->cipher();
|
|
|
|
// FIXME: We should have two of these encrypt/decrypt functions that
|
|
// we SFINAE out based on whether the Cipher mode needs an ivec
|
|
VERIFY(!ivec.is_empty());
|
|
VERIFY(ivec.size() >= IV_length());
|
|
|
|
m_cipher_block.set_padding_mode(cipher.padding_mode());
|
|
|
|
__builtin_memcpy(m_ivec_storage, ivec.data(), IV_length());
|
|
Bytes iv { m_ivec_storage, IV_length() };
|
|
|
|
size_t offset { 0 };
|
|
auto block_size = cipher.block_size();
|
|
|
|
while (length > 0) {
|
|
m_cipher_block.overwrite(iv.slice(0, block_size));
|
|
|
|
cipher.encrypt_block(m_cipher_block, m_cipher_block);
|
|
if (in) {
|
|
m_cipher_block.apply_initialization_vector(in->slice(offset));
|
|
}
|
|
auto write_size = min(block_size, length);
|
|
|
|
VERIFY(offset + write_size <= out.size());
|
|
__builtin_memcpy(out.offset(offset), m_cipher_block.bytes().data(), write_size);
|
|
|
|
increment(iv);
|
|
length -= write_size;
|
|
offset += write_size;
|
|
}
|
|
// FIXME: Apply padding if requested
|
|
|
|
if (ivec_out)
|
|
__builtin_memcpy(ivec_out->data(), iv.data(), min(ivec_out->size(), IV_length()));
|
|
}
|
|
};
|
|
|
|
}
|