ladybird/Kernel/Time/TimeManagement.cpp

556 lines
19 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* Copyright (c) 2022, Timon Kruiper <timonkruiper@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Singleton.h>
#include <AK/StdLibExtras.h>
#include <AK/Time.h>
#if ARCH(X86_64)
# include <Kernel/Arch/x86_64/Interrupts/APIC.h>
# include <Kernel/Arch/x86_64/RTC.h>
# include <Kernel/Arch/x86_64/Time/APICTimer.h>
# include <Kernel/Arch/x86_64/Time/HPET.h>
# include <Kernel/Arch/x86_64/Time/HPETComparator.h>
# include <Kernel/Arch/x86_64/Time/PIT.h>
# include <Kernel/Arch/x86_64/Time/RTC.h>
#elif ARCH(AARCH64)
# include <Kernel/Arch/aarch64/RPi/Timer.h>
#else
# error Unknown architecture
#endif
#include <Kernel/Arch/CurrentTime.h>
#include <Kernel/Boot/CommandLine.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Interrupts/InterruptDisabler.h>
#include <Kernel/Sections.h>
#include <Kernel/Tasks/PerformanceManager.h>
#include <Kernel/Tasks/Scheduler.h>
#include <Kernel/Time/HardwareTimer.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/Time/TimerQueue.h>
namespace Kernel {
static Singleton<TimeManagement> s_the;
bool TimeManagement::is_initialized()
{
return s_the.is_initialized();
}
TimeManagement& TimeManagement::the()
{
return *s_the;
}
// The s_scheduler_specific_current_time function provides a current time for scheduling purposes,
// which may not necessarily relate to wall time
static u64 (*s_scheduler_current_time)();
static u64 current_time_monotonic()
{
// We always need a precise timestamp here, we cannot rely on a coarse timestamp
return (u64)TimeManagement::the().monotonic_time(TimePrecision::Precise).nanoseconds();
}
u64 TimeManagement::scheduler_current_time()
{
VERIFY(s_scheduler_current_time);
return s_scheduler_current_time();
}
ErrorOr<void> TimeManagement::validate_clock_id(clockid_t clock_id)
{
switch (clock_id) {
case CLOCK_MONOTONIC:
case CLOCK_MONOTONIC_COARSE:
case CLOCK_MONOTONIC_RAW:
case CLOCK_REALTIME:
case CLOCK_REALTIME_COARSE:
return {};
default:
return EINVAL;
};
}
Duration TimeManagement::current_time(clockid_t clock_id) const
{
switch (clock_id) {
case CLOCK_MONOTONIC:
return monotonic_time(TimePrecision::Precise).time_since_start({});
case CLOCK_MONOTONIC_COARSE:
return monotonic_time(TimePrecision::Coarse).time_since_start({});
case CLOCK_MONOTONIC_RAW:
return monotonic_time_raw().time_since_start({});
case CLOCK_REALTIME:
return epoch_time(TimePrecision::Precise).offset_to_epoch();
case CLOCK_REALTIME_COARSE:
return epoch_time(TimePrecision::Coarse).offset_to_epoch();
default:
// Syscall entrypoint is missing a is_valid_clock_id(..) check?
VERIFY_NOT_REACHED();
}
}
bool TimeManagement::is_system_timer(HardwareTimerBase const& timer) const
{
return &timer == m_system_timer.ptr();
}
void TimeManagement::set_epoch_time(UnixDateTime ts)
{
// FIXME: The interrupt disabler intends to enforce atomic update of epoch time and remaining adjustment,
// but that sort of assumption is known to break on SMP.
InterruptDisabler disabler;
m_epoch_time = ts;
m_remaining_epoch_time_adjustment = {};
}
MonotonicTime TimeManagement::monotonic_time(TimePrecision precision) const
{
// This is the time when last updated by an interrupt.
u64 seconds;
u32 ticks;
bool do_query = precision == TimePrecision::Precise && m_can_query_precise_time;
u32 update_iteration;
do {
update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
seconds = m_seconds_since_boot;
ticks = m_ticks_this_second;
if (do_query) {
#if ARCH(X86_64)
// We may have to do this over again if the timer interrupt fires
// while we're trying to query the information. In that case, our
// seconds and ticks became invalid, producing an incorrect time.
// Be sure to not modify m_seconds_since_boot and m_ticks_this_second
// because this may only be modified by the interrupt handler
HPET::the().update_time(seconds, ticks, true);
#elif ARCH(AARCH64)
// FIXME: Get rid of these horrible casts
const_cast<RPi::Timer*>(static_cast<RPi::Timer const*>(m_system_timer.ptr()))->update_time(seconds, ticks, true);
#else
# error Unknown architecture
#endif
}
} while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));
VERIFY(m_time_ticks_per_second > 0);
VERIFY(ticks < m_time_ticks_per_second);
u64 ns = ((u64)ticks * 1000000000ull) / m_time_ticks_per_second;
VERIFY(ns < 1000000000ull);
return MonotonicTime::from_hardware_time({}, seconds, ns);
}
UnixDateTime TimeManagement::epoch_time(TimePrecision) const
{
// TODO: Take into account precision
UnixDateTime time;
u32 update_iteration;
do {
update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
time = m_epoch_time;
} while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));
return time;
}
u64 TimeManagement::uptime_ms() const
{
auto mtime = monotonic_time().time_since_start({}).to_timespec();
// This overflows after 292 million years of uptime.
// Since this is only used for performance timestamps and sys$times, that's probably enough.
u64 ms = mtime.tv_sec * 1000ull;
ms += mtime.tv_nsec / 1000000;
return ms;
}
UNMAP_AFTER_INIT void TimeManagement::initialize([[maybe_unused]] u32 cpu)
{
// Note: We must disable interrupts, because the timers interrupt might fire before
// the TimeManagement class is completely initialized.
InterruptDisabler disabler;
#if ARCH(X86_64)
if (cpu == 0) {
VERIFY(!s_the.is_initialized());
s_the.ensure_instance();
if (APIC::initialized()) {
// Initialize the APIC timers after the other timers as the
// initialization needs to briefly enable interrupts, which then
// would trigger a deadlock trying to get the s_the instance while
// creating it.
if (auto* apic_timer = APIC::the().initialize_timers(*s_the->m_system_timer)) {
dmesgln("Duration: Using APIC timer as system timer");
s_the->set_system_timer(*apic_timer);
}
}
} else {
VERIFY(s_the.is_initialized());
if (auto* apic_timer = APIC::the().get_timer()) {
dmesgln("Duration: Enable APIC timer on CPU #{}", cpu);
apic_timer->enable_local_timer();
}
}
#elif ARCH(AARCH64)
if (cpu == 0) {
VERIFY(!s_the.is_initialized());
s_the.ensure_instance();
}
#else
# error Unknown architecture
#endif
auto* possible_arch_specific_current_time_function = optional_current_time();
if (possible_arch_specific_current_time_function)
s_scheduler_current_time = possible_arch_specific_current_time_function;
else
s_scheduler_current_time = current_time_monotonic;
}
void TimeManagement::set_system_timer(HardwareTimerBase& timer)
{
VERIFY(Processor::is_bootstrap_processor()); // This should only be called on the BSP!
auto original_callback = m_system_timer->set_callback(nullptr);
m_system_timer->disable();
timer.set_callback(move(original_callback));
m_system_timer = timer;
}
time_t TimeManagement::ticks_per_second() const
{
return m_time_keeper_timer->ticks_per_second();
}
UnixDateTime TimeManagement::boot_time()
{
#if ARCH(X86_64)
return RTC::boot_time();
#elif ARCH(AARCH64)
// FIXME: Return correct boot time
return UnixDateTime::epoch();
#else
# error Unknown architecture
#endif
}
Duration TimeManagement::clock_resolution() const
{
long nanoseconds_per_tick = 1'000'000'000 / m_time_keeper_timer->ticks_per_second();
return Duration::from_nanoseconds(nanoseconds_per_tick);
}
UNMAP_AFTER_INIT TimeManagement::TimeManagement()
: m_time_page_region(MM.allocate_kernel_region(PAGE_SIZE, "Duration page"sv, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value_but_fixme_should_propagate_errors())
{
#if ARCH(X86_64)
bool probe_non_legacy_hardware_timers = !(kernel_command_line().is_legacy_time_enabled());
if (ACPI::is_enabled()) {
if (!ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
RTC::initialize();
m_epoch_time += boot_time().offset_to_epoch();
} else {
dmesgln("ACPI: RTC CMOS Not present");
}
} else {
// We just assume that we can access RTC CMOS, if ACPI isn't usable.
RTC::initialize();
m_epoch_time += boot_time().offset_to_epoch();
}
if (probe_non_legacy_hardware_timers) {
if (!probe_and_set_x86_non_legacy_hardware_timers())
if (!probe_and_set_x86_legacy_hardware_timers())
VERIFY_NOT_REACHED();
} else if (!probe_and_set_x86_legacy_hardware_timers()) {
VERIFY_NOT_REACHED();
}
#elif ARCH(AARCH64)
probe_and_set_aarch64_hardware_timers();
#else
# error Unknown architecture
#endif
}
UnixDateTime TimeManagement::now()
{
return s_the.ptr()->epoch_time();
}
UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_and_initialize_periodic_timers()
{
bool should_enable = is_hpet_periodic_mode_allowed();
dbgln("Duration: Scanning for periodic timers");
Vector<HardwareTimerBase*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (hardware_timer->is_periodic_capable()) {
timers.append(hardware_timer);
if (should_enable)
hardware_timer->set_periodic();
}
}
return timers;
}
UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_for_non_periodic_timers()
{
dbgln("Duration: Scanning for non-periodic timers");
Vector<HardwareTimerBase*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (!hardware_timer->is_periodic_capable())
timers.append(hardware_timer);
}
return timers;
}
bool TimeManagement::is_hpet_periodic_mode_allowed()
{
switch (kernel_command_line().hpet_mode()) {
case HPETMode::Periodic:
return true;
case HPETMode::NonPeriodic:
return false;
default:
VERIFY_NOT_REACHED();
}
}
#if ARCH(X86_64)
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_x86_non_legacy_hardware_timers()
{
if (!ACPI::is_enabled())
return false;
if (!HPET::test_and_initialize())
return false;
if (!HPET::the().comparators().size()) {
dbgln("HPET initialization aborted.");
return false;
}
dbgln("HPET: Setting appropriate functions to timers.");
for (auto& hpet_comparator : HPET::the().comparators())
m_hardware_timers.append(hpet_comparator);
auto periodic_timers = scan_and_initialize_periodic_timers();
auto non_periodic_timers = scan_for_non_periodic_timers();
if (is_hpet_periodic_mode_allowed())
VERIFY(!periodic_timers.is_empty());
VERIFY(periodic_timers.size() + non_periodic_timers.size() > 0);
size_t taken_periodic_timers_count = 0;
size_t taken_non_periodic_timers_count = 0;
if (periodic_timers.size() > taken_periodic_timers_count) {
m_system_timer = periodic_timers[taken_periodic_timers_count];
taken_periodic_timers_count += 1;
} else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
m_system_timer = non_periodic_timers[taken_non_periodic_timers_count];
taken_non_periodic_timers_count += 1;
}
m_system_timer->set_callback([this](RegisterState const& regs) {
// Update the time. We don't really care too much about the
// frequency of the interrupt because we'll query the main
// counter to get an accurate time.
if (Processor::is_bootstrap_processor()) {
// TODO: Have the other CPUs call system_timer_tick directly
increment_time_since_boot_hpet();
}
system_timer_tick(regs);
});
// Use the HPET main counter frequency for time purposes. This is likely
// a much higher frequency than the interrupt itself and allows us to
// keep a more accurate time
m_can_query_precise_time = true;
m_time_ticks_per_second = HPET::the().frequency();
m_system_timer->try_to_set_frequency(m_system_timer->calculate_nearest_possible_frequency(OPTIMAL_TICKS_PER_SECOND_RATE));
// We don't need an interrupt for time keeping purposes because we
// can query the timer.
m_time_keeper_timer = m_system_timer;
if (periodic_timers.size() > taken_periodic_timers_count) {
m_profile_timer = periodic_timers[taken_periodic_timers_count];
taken_periodic_timers_count += 1;
} else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
m_profile_timer = non_periodic_timers[taken_non_periodic_timers_count];
taken_non_periodic_timers_count += 1;
}
if (m_profile_timer) {
m_profile_timer->set_callback(PerformanceManager::timer_tick);
m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
}
return true;
}
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_x86_legacy_hardware_timers()
{
if (ACPI::is_enabled()) {
if (ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
dbgln("ACPI: CMOS RTC Not Present");
return false;
} else {
dbgln("ACPI: CMOS RTC Present");
}
}
m_hardware_timers.append(PIT::initialize(TimeManagement::update_time));
m_hardware_timers.append(RealTimeClock::create(TimeManagement::system_timer_tick));
m_time_keeper_timer = m_hardware_timers[0];
m_system_timer = m_hardware_timers[1];
// The timer is only as accurate as the interrupts...
m_time_ticks_per_second = m_time_keeper_timer->ticks_per_second();
return true;
}
void TimeManagement::update_time(RegisterState const&)
{
TimeManagement::the().increment_time_since_boot();
}
void TimeManagement::increment_time_since_boot_hpet()
{
VERIFY(!m_time_keeper_timer.is_null());
VERIFY(m_time_keeper_timer->timer_type() == HardwareTimerType::HighPrecisionEventTimer);
// NOTE: m_seconds_since_boot and m_ticks_this_second are only ever
// updated here! So we can safely read that information, query the clock,
// and when we're all done we can update the information. This reduces
// contention when other processors attempt to read the clock.
auto seconds_since_boot = m_seconds_since_boot;
auto ticks_this_second = m_ticks_this_second;
auto delta_ns = HPET::the().update_time(seconds_since_boot, ticks_this_second, false);
// Now that we have a precise time, go update it as quickly as we can
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
m_seconds_since_boot = seconds_since_boot;
m_ticks_this_second = ticks_this_second;
// TODO: Apply m_remaining_epoch_time_adjustment
timespec time_adjustment = { (time_t)(delta_ns / 1000000000), (long)(delta_ns % 1000000000) };
m_epoch_time += Duration::from_timespec(time_adjustment);
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
update_time_page();
}
#elif ARCH(AARCH64)
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_aarch64_hardware_timers()
{
m_hardware_timers.append(RPi::Timer::initialize());
m_system_timer = m_hardware_timers[0];
m_time_ticks_per_second = m_system_timer->frequency();
m_system_timer->set_callback([this](RegisterState const& regs) {
auto seconds_since_boot = m_seconds_since_boot;
auto ticks_this_second = m_ticks_this_second;
auto delta_ns = static_cast<RPi::Timer*>(m_system_timer.ptr())->update_time(seconds_since_boot, ticks_this_second, false);
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
m_seconds_since_boot = seconds_since_boot;
m_ticks_this_second = ticks_this_second;
m_epoch_time += Duration::from_nanoseconds(delta_ns);
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
update_time_page();
system_timer_tick(regs);
});
m_time_keeper_timer = m_system_timer;
return true;
}
#else
# error Unknown architecture
#endif
void TimeManagement::increment_time_since_boot()
{
VERIFY(!m_time_keeper_timer.is_null());
// Compute time adjustment for adjtime. Let the clock run up to 1% fast or slow.
// That way, adjtime can adjust up to 36 seconds per hour, without time getting very jumpy.
// Once we have a smarter NTP service that also adjusts the frequency instead of just slewing time, maybe we can lower this.
long nanos_per_tick = 1'000'000'000 / m_time_keeper_timer->frequency();
time_t max_slew_nanos = nanos_per_tick / 100;
u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
auto slew_nanos = Duration::from_nanoseconds(
clamp(m_remaining_epoch_time_adjustment.to_nanoseconds(), -max_slew_nanos, max_slew_nanos));
m_remaining_epoch_time_adjustment -= slew_nanos;
m_epoch_time += Duration::from_nanoseconds(nanos_per_tick + slew_nanos.to_nanoseconds());
if (++m_ticks_this_second >= m_time_keeper_timer->ticks_per_second()) {
// FIXME: Synchronize with other clock somehow to prevent drifting apart.
++m_seconds_since_boot;
m_ticks_this_second = 0;
}
m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);
update_time_page();
}
void TimeManagement::system_timer_tick(RegisterState const& regs)
{
if (Processor::current_in_irq() <= 1) {
// Don't expire timers while handling IRQs
TimerQueue::the().fire();
}
Scheduler::timer_tick(regs);
}
bool TimeManagement::enable_profile_timer()
{
if (!m_profile_timer)
return false;
if (m_profile_enable_count.fetch_add(1) == 0)
return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(OPTIMAL_PROFILE_TICKS_PER_SECOND_RATE));
return true;
}
bool TimeManagement::disable_profile_timer()
{
if (!m_profile_timer)
return false;
if (m_profile_enable_count.fetch_sub(1) == 1)
return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
return true;
}
void TimeManagement::update_time_page()
{
auto& page = time_page();
u32 update_iteration = AK::atomic_fetch_add(&page.update2, 1u, AK::MemoryOrder::memory_order_acquire);
page.clocks[CLOCK_REALTIME_COARSE] = m_epoch_time.to_timespec();
page.clocks[CLOCK_MONOTONIC_COARSE] = monotonic_time(TimePrecision::Coarse).time_since_start({}).to_timespec();
AK::atomic_store(&page.update1, update_iteration + 1u, AK::MemoryOrder::memory_order_release);
}
TimePage& TimeManagement::time_page()
{
return *static_cast<TimePage*>((void*)m_time_page_region->vaddr().as_ptr());
}
Memory::VMObject& TimeManagement::time_page_vmobject()
{
return m_time_page_region->vmobject();
}
}