ladybird/Kernel/TimerQueue.cpp
Tom 47ede74326 Kernel: Execute timer handlers outside of irq handler
This allows us to do things in timer handlers that involve e.g. scheduling,
such as using the Lock class or unblocking threads.
2020-12-12 21:28:12 +01:00

313 lines
11 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Function.h>
#include <AK/NonnullOwnPtr.h>
#include <AK/OwnPtr.h>
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
namespace Kernel {
static AK::Singleton<TimerQueue> s_the;
static SpinLock<u8> g_timerqueue_lock;
timespec Timer::remaining() const
{
if (m_remaining == 0)
return {};
return TimerQueue::the().ticks_to_time(m_clock_id, m_remaining);
}
u64 Timer::now() const
{
return TimerQueue::the().time_to_ticks(m_clock_id, TimeManagement::the().current_time(m_clock_id).value());
}
TimerQueue& TimerQueue::the()
{
return *s_the;
}
TimerQueue::TimerQueue()
{
m_ticks_per_second = TimeManagement::the().ticks_per_second();
}
RefPtr<Timer> TimerQueue::add_timer_without_id(clockid_t clock_id, const timespec& deadline, Function<void()>&& callback)
{
if (deadline <= TimeManagement::the().current_time(clock_id).value())
return {};
// Because timer handlers can execute on any processor and there is
// a race between executing a timer handler and cancel_timer() this
// *must* be a RefPtr<Timer>. Otherwise calling cancel_timer() could
// inadvertently cancel another timer that has been created between
// returning from the timer handler and a call to cancel_timer().
auto timer = adopt(*new Timer(clock_id, time_to_ticks(clock_id, deadline), move(callback)));
ScopedSpinLock lock(g_timerqueue_lock);
timer->m_id = 0; // Don't generate a timer id
add_timer_locked(timer);
return timer;
}
TimerId TimerQueue::add_timer(NonnullRefPtr<Timer>&& timer)
{
ScopedSpinLock lock(g_timerqueue_lock);
timer->m_id = ++m_timer_id_count;
ASSERT(timer->m_id != 0); // wrapped
add_timer_locked(move(timer));
return m_timer_id_count;
}
void TimerQueue::add_timer_locked(NonnullRefPtr<Timer> timer)
{
u64 timer_expiration = timer->m_expires;
ASSERT(timer_expiration >= time_to_ticks(timer->m_clock_id, TimeManagement::the().current_time(timer->m_clock_id).value()));
ASSERT(!timer->is_queued());
auto& queue = queue_for_timer(*timer);
if (queue.list.is_empty()) {
queue.list.append(&timer.leak_ref());
queue.next_timer_due = timer_expiration;
} else {
Timer* following_timer = nullptr;
queue.list.for_each([&](Timer& t) {
if (t.m_expires > timer_expiration) {
following_timer = &t;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (following_timer) {
bool next_timer_needs_update = queue.list.head() == following_timer;
queue.list.insert_before(following_timer, &timer.leak_ref());
if (next_timer_needs_update)
queue.next_timer_due = timer_expiration;
} else {
queue.list.append(&timer.leak_ref());
}
}
}
TimerId TimerQueue::add_timer(clockid_t clock_id, timeval& deadline, Function<void()>&& callback)
{
auto expires = TimeManagement::the().current_time(clock_id).value();
timespec_add_timeval(expires, deadline, expires);
return add_timer(adopt(*new Timer(clock_id, time_to_ticks(clock_id, expires), move(callback))));
}
timespec TimerQueue::ticks_to_time(clockid_t clock_id, u64 ticks) const
{
timespec tspec;
switch (clock_id) {
case CLOCK_MONOTONIC:
tspec.tv_sec = ticks / m_ticks_per_second;
tspec.tv_nsec = (ticks % m_ticks_per_second) * (1'000'000'000 / m_ticks_per_second);
break;
case CLOCK_REALTIME:
tspec.tv_sec = ticks / 1'000'000'000;
tspec.tv_nsec = ticks % 1'000'000'000;
break;
default:
ASSERT_NOT_REACHED();
}
ASSERT(tspec.tv_nsec <= 1'000'000'000);
return tspec;
}
u64 TimerQueue::time_to_ticks(clockid_t clock_id, const timespec& tspec) const
{
u64 ticks;
switch (clock_id) {
case CLOCK_MONOTONIC:
ticks = (u64)tspec.tv_sec * m_ticks_per_second;
ticks += ((u64)tspec.tv_nsec * m_ticks_per_second) / 1'000'000'000;
break;
case CLOCK_REALTIME:
ticks = (u64)tspec.tv_sec * 1'000'000'000 + tspec.tv_nsec;
break;
default:
ASSERT_NOT_REACHED();
}
return ticks;
}
bool TimerQueue::cancel_timer(TimerId id)
{
Timer* found_timer = nullptr;
Queue* timer_queue = nullptr;
ScopedSpinLock lock(g_timerqueue_lock);
if (m_timer_queue_monotonic.list.for_each([&](Timer& timer) {
if (timer.m_id == id) {
found_timer = &timer;
timer_queue = &m_timer_queue_monotonic;
return IterationDecision::Break;
}
return IterationDecision::Continue;
})
!= IterationDecision::Break) {
m_timer_queue_realtime.list.for_each([&](Timer& timer) {
if (timer.m_id == id) {
found_timer = &timer;
timer_queue = &m_timer_queue_realtime;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
if (!found_timer) {
// The timer may be executing right now, if it is then it should
// be in m_timers_executing. If it is then release the lock
// briefly to allow it to finish by removing itself
// NOTE: This can only happen with multiple processors!
while (m_timers_executing.for_each([&](Timer& timer) {
if (timer.m_id == id)
return IterationDecision::Break;
return IterationDecision::Continue;
}) == IterationDecision::Break) {
// NOTE: This isn't the most efficient way to wait, but
// it should only happen when multiple processors are used.
// Also, the timers should execute pretty quickly, so it
// should not loop here for very long. But we can't yield.
lock.unlock();
Processor::wait_check();
lock.lock();
}
// We were not able to cancel the timer, but at this point
// the handler should have completed if it was running!
return false;
}
ASSERT(found_timer);
ASSERT(timer_queue);
remove_timer_locked(*timer_queue, *found_timer);
return true;
}
bool TimerQueue::cancel_timer(Timer& timer)
{
auto& timer_queue = queue_for_timer(timer);
ScopedSpinLock lock(g_timerqueue_lock);
if (!timer_queue.list.contains_slow(&timer)) {
// The timer may be executing right now, if it is then it should
// be in m_timers_executing. If it is then release the lock
// briefly to allow it to finish by removing itself
// NOTE: This can only happen with multiple processors!
while (m_timers_executing.contains_slow(&timer)) {
// NOTE: This isn't the most efficient way to wait, but
// it should only happen when multiple processors are used.
// Also, the timers should execute pretty quickly, so it
// should not loop here for very long. But we can't yield.
lock.unlock();
Processor::wait_check();
lock.lock();
}
// We were not able to cancel the timer, but at this point
// the handler should have completed if it was running!
return false;
}
ASSERT(timer.ref_count() > 1);
remove_timer_locked(timer_queue, timer);
return true;
}
void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer)
{
bool was_next_timer = (queue.list.head() == &timer);
queue.list.remove(&timer);
timer.set_queued(false);
auto now = timer.now();
if (timer.m_expires > now)
timer.m_remaining = timer.m_expires - now;
if (was_next_timer)
update_next_timer_due(queue);
// Whenever we remove a timer that was still queued (but hasn't been
// fired) we added a reference to it. So, when removing it from the
// queue we need to drop that reference.
timer.unref();
}
void TimerQueue::fire()
{
ScopedSpinLock lock(g_timerqueue_lock);
auto fire_timers = [&](Queue& queue) {
auto* timer = queue.list.head();
ASSERT(timer);
ASSERT(queue.next_timer_due == timer->m_expires);
while (timer && timer->now() > timer->m_expires) {
queue.list.remove(timer);
timer->set_queued(false);
m_timers_executing.append(timer);
update_next_timer_due(queue);
lock.unlock();
// Defer executing the timer outside of the irq handler
Processor::current().deferred_call_queue([this, timer]() {
timer->m_callback();
ScopedSpinLock lock(g_timerqueue_lock);
m_timers_executing.remove(timer);
// Drop the reference we added when queueing the timer
timer->unref();
});
lock.lock();
timer = queue.list.head();
}
};
if (!m_timer_queue_monotonic.list.is_empty())
fire_timers(m_timer_queue_monotonic);
if (!m_timer_queue_realtime.list.is_empty())
fire_timers(m_timer_queue_realtime);
}
void TimerQueue::update_next_timer_due(Queue& queue)
{
ASSERT(g_timerqueue_lock.is_locked());
if (auto* next_timer = queue.list.head())
queue.next_timer_due = next_timer->m_expires;
else
queue.next_timer_due = 0;
}
}