mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 23:50:19 +00:00
3f45e9ab1e
They are dependencies of LibWeb and might be useful for running test-web on GitHub actions one day.
1284 lines
47 KiB
C++
1284 lines
47 KiB
C++
/*
|
|
* Copyright (c) 2020, The SerenityOS developers.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <AK/Bitmap.h>
|
|
#include <AK/BufferStream.h>
|
|
#include <AK/ByteBuffer.h>
|
|
#include <AK/LexicalPath.h>
|
|
#include <AK/MappedFile.h>
|
|
#include <AK/String.h>
|
|
#include <AK/Vector.h>
|
|
#include <LibGfx/Bitmap.h>
|
|
#include <LibGfx/JPGLoader.h>
|
|
#include <Libraries/LibM/math.h>
|
|
|
|
#define JPG_DBG 0
|
|
#define jpg_dbg(x) \
|
|
if (JPG_DBG) \
|
|
dbg() << x
|
|
|
|
#define JPG_INVALID 0X0000
|
|
|
|
#define JPG_APPN0 0XFFE0
|
|
#define JPG_APPN1 0XFFE1
|
|
#define JPG_APPN2 0XFFE2
|
|
#define JPG_APPN3 0XFFE3
|
|
#define JPG_APPN4 0XFFE4
|
|
#define JPG_APPN5 0XFFE5
|
|
#define JPG_APPN6 0XFFE6
|
|
#define JPG_APPN7 0XFFE7
|
|
#define JPG_APPN8 0XFFE8
|
|
#define JPG_APPN9 0XFFE9
|
|
#define JPG_APPNA 0XFFEA
|
|
#define JPG_APPNB 0XFFEB
|
|
#define JPG_APPNC 0XFFEC
|
|
#define JPG_APPND 0XFFED
|
|
#define JPG_APPNE 0xFFEE
|
|
#define JPG_APPNF 0xFFEF
|
|
|
|
#define JPG_RESERVED1 0xFFF1
|
|
#define JPG_RESERVED2 0xFFF2
|
|
#define JPG_RESERVED3 0xFFF3
|
|
#define JPG_RESERVED4 0xFFF4
|
|
#define JPG_RESERVED5 0xFFF5
|
|
#define JPG_RESERVED6 0xFFF6
|
|
#define JPG_RESERVED7 0xFFF7
|
|
#define JPG_RESERVED8 0xFFF8
|
|
#define JPG_RESERVED9 0xFFF9
|
|
#define JPG_RESERVEDA 0xFFFA
|
|
#define JPG_RESERVEDB 0xFFFB
|
|
#define JPG_RESERVEDC 0xFFFC
|
|
#define JPG_RESERVEDD 0xFFFD
|
|
|
|
#define JPG_RST0 0xFFD0
|
|
#define JPG_RST1 0xFFD1
|
|
#define JPG_RST2 0xFFD2
|
|
#define JPG_RST3 0xFFD3
|
|
#define JPG_RST4 0xFFD4
|
|
#define JPG_RST5 0xFFD5
|
|
#define JPG_RST6 0xFFD6
|
|
#define JPG_RST7 0xFFD7
|
|
|
|
#define JPG_DHP 0xFFDE
|
|
#define JPG_EXP 0xFFDF
|
|
|
|
#define JPG_DHT 0XFFC4
|
|
#define JPG_DQT 0XFFDB
|
|
#define JPG_EOI 0xFFD9
|
|
#define JPG_RST 0XFFDD
|
|
#define JPG_SOF0 0XFFC0
|
|
#define JPG_SOF2 0xFFC2
|
|
#define JPG_SOI 0XFFD8
|
|
#define JPG_SOS 0XFFDA
|
|
#define JPG_COM 0xFFFE
|
|
|
|
namespace Gfx {
|
|
|
|
constexpr static u8 zigzag_map[64] {
|
|
0, 1, 8, 16, 9, 2, 3, 10,
|
|
17, 24, 32, 25, 18, 11, 4, 5,
|
|
12, 19, 26, 33, 40, 48, 41, 34,
|
|
27, 20, 13, 6, 7, 14, 21, 28,
|
|
35, 42, 49, 56, 57, 50, 43, 36,
|
|
29, 22, 15, 23, 30, 37, 44, 51,
|
|
58, 59, 52, 45, 38, 31, 39, 46,
|
|
53, 60, 61, 54, 47, 55, 62, 63
|
|
};
|
|
|
|
using Marker = u16;
|
|
|
|
/**
|
|
* MCU means group of data units that are coded together. A data unit is an 8x8
|
|
* block of component data. In interleaved scans, number of non-interleaved data
|
|
* units of a component C is Ch * Cv, where Ch and Cv represent the horizontal &
|
|
* vertical subsampling factors of the component, respectively. A MacroBlock is
|
|
* an 8x8 block of RGB values before encoding, and 8x8 block of YCbCr values when
|
|
* we're done decoding the huffman stream.
|
|
*/
|
|
struct Macroblock {
|
|
union {
|
|
i32 y[64] = { 0 };
|
|
i32 r[64];
|
|
};
|
|
|
|
union {
|
|
i32 cb[64] = { 0 };
|
|
i32 g[64];
|
|
};
|
|
|
|
union {
|
|
i32 cr[64] = { 0 };
|
|
i32 b[64];
|
|
};
|
|
};
|
|
|
|
struct MacroblockMeta {
|
|
u32 total { 0 };
|
|
u32 padded_total { 0 };
|
|
u32 hcount { 0 };
|
|
u32 vcount { 0 };
|
|
u32 hpadded_count { 0 };
|
|
u32 vpadded_count { 0 };
|
|
};
|
|
|
|
struct ComponentSpec {
|
|
i8 id { -1 };
|
|
u8 hsample_factor { 1 }; // Horizontal sampling factor.
|
|
u8 vsample_factor { 1 }; // Vertical sampling factor.
|
|
u8 ac_destination_id { 0 };
|
|
u8 dc_destination_id { 0 };
|
|
u8 qtable_id { 0 }; // Quantization table id.
|
|
};
|
|
|
|
struct StartOfFrame {
|
|
|
|
// Of these, only the first 3 are in mainstream use, and refers to SOF0-2.
|
|
enum class FrameType {
|
|
Baseline_DCT = 0,
|
|
Extended_Sequential_DCT = 1,
|
|
Progressive_DCT = 2,
|
|
Sequential_Lossless = 3,
|
|
Differential_Sequential_DCT = 5,
|
|
Differential_Progressive_DCT = 6,
|
|
Differential_Sequential_Lossless = 7,
|
|
Extended_Sequential_DCT_Arithmetic = 9,
|
|
Progressive_DCT_Arithmetic = 10,
|
|
Sequential_Lossless_Arithmetic = 11,
|
|
Differential_Sequential_DCT_Arithmetic = 13,
|
|
Differential_Progressive_DCT_Arithmetic = 14,
|
|
Differential_Sequential_Lossless_Arithmetic = 15,
|
|
};
|
|
|
|
FrameType type { FrameType::Baseline_DCT };
|
|
u8 precision { 0 };
|
|
u16 height { 0 };
|
|
u16 width { 0 };
|
|
};
|
|
|
|
struct HuffmanTableSpec {
|
|
u8 type { 0 };
|
|
u8 destination_id { 0 };
|
|
u8 code_counts[16] = { 0 };
|
|
Vector<u8> symbols;
|
|
Vector<u16> codes;
|
|
};
|
|
|
|
struct HuffmanStreamState {
|
|
Vector<u8> stream;
|
|
u8 bit_offset { 0 };
|
|
size_t byte_offset { 0 };
|
|
};
|
|
|
|
struct JPGLoadingContext {
|
|
enum State {
|
|
NotDecoded = 0,
|
|
Error,
|
|
FrameDecoded,
|
|
BitmapDecoded
|
|
};
|
|
|
|
State state { State::NotDecoded };
|
|
const u8* data { nullptr };
|
|
size_t data_size { 0 };
|
|
u32 luma_table[64] = { 0 };
|
|
u32 chroma_table[64] = { 0 };
|
|
StartOfFrame frame;
|
|
u8 hsample_factor { 0 };
|
|
u8 vsample_factor { 0 };
|
|
bool has_zero_based_ids { false };
|
|
u8 component_count { 0 };
|
|
ComponentSpec components[3];
|
|
RefPtr<Gfx::Bitmap> bitmap;
|
|
u16 dc_reset_interval { 0 };
|
|
Vector<HuffmanTableSpec> dc_tables;
|
|
Vector<HuffmanTableSpec> ac_tables;
|
|
HuffmanStreamState huffman_stream;
|
|
i32 previous_dc_values[3] = { 0 };
|
|
MacroblockMeta mblock_meta;
|
|
};
|
|
|
|
void generate_huffman_codes(HuffmanTableSpec& table)
|
|
{
|
|
unsigned code = 0;
|
|
for (auto number_of_codes : table.code_counts) {
|
|
for (int i = 0; i < number_of_codes; i++)
|
|
table.codes.append(code++);
|
|
code <<= 1;
|
|
}
|
|
}
|
|
|
|
Optional<size_t> read_huffman_bits(HuffmanStreamState& hstream, size_t count = 1)
|
|
{
|
|
if (count > (8 * sizeof(size_t))) {
|
|
dbg() << String::format("Can't read %i bits at once!", count);
|
|
return {};
|
|
}
|
|
size_t value = 0;
|
|
while (count--) {
|
|
if (hstream.byte_offset >= hstream.stream.size()) {
|
|
dbg() << String::format("Huffman stream exhausted. This could be an error!");
|
|
return {};
|
|
}
|
|
u8 current_byte = hstream.stream[hstream.byte_offset];
|
|
u8 current_bit = 1u & (u32)(current_byte >> (7 - hstream.bit_offset)); // MSB first.
|
|
hstream.bit_offset++;
|
|
value = (value << 1) | (size_t)current_bit;
|
|
if (hstream.bit_offset == 8) {
|
|
hstream.byte_offset++;
|
|
hstream.bit_offset = 0;
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
Optional<u8> get_next_symbol(HuffmanStreamState& hstream, const HuffmanTableSpec& table)
|
|
{
|
|
unsigned code = 0;
|
|
size_t code_cursor = 0;
|
|
for (int i = 0; i < 16; i++) { // Codes can't be longer than 16 bits.
|
|
auto result = read_huffman_bits(hstream);
|
|
if (!result.has_value())
|
|
return {};
|
|
code = (code << 1) | (i32)result.release_value();
|
|
for (int j = 0; j < table.code_counts[i]; j++) {
|
|
if (code == table.codes[code_cursor])
|
|
return table.symbols[code_cursor];
|
|
code_cursor++;
|
|
}
|
|
}
|
|
|
|
dbg() << "If you're seeing this...the jpeg decoder needs to support more kinds of JPEGs!";
|
|
return {};
|
|
}
|
|
|
|
/**
|
|
* Build the macroblocks possible by reading single (MCU) subsampled pair of CbCr.
|
|
* Depending on the sampling factors, we may not see triples of y, cb, cr in that
|
|
* order. If sample factors differ from one, we'll read more than one block of y-
|
|
* coefficients before we get to read a cb-cr block.
|
|
|
|
* In the function below, `hcursor` and `vcursor` denote the location of the block
|
|
* we're building in the macroblock matrix. `vfactor_i` and `hfactor_i` are cursors
|
|
* that iterate over the vertical and horizontal subsampling factors, respectively.
|
|
* When we finish one iteration of the innermost loop, we'll have the coefficients
|
|
* of one of the components of block at position `mb_index`. When the outermost loop
|
|
* finishes first iteration, we'll have all the luminance coefficients for all the
|
|
* macroblocks that share the chrominance data. Next two iterations (assuming that
|
|
* we are dealing with three components) will fill up the blocks with chroma data.
|
|
*/
|
|
bool build_macroblocks(JPGLoadingContext& context, Vector<Macroblock>& macroblocks, u8 hcursor, u8 vcursor)
|
|
{
|
|
for (u32 cindex = 0; cindex < context.component_count; cindex++) {
|
|
auto& component = context.components[cindex];
|
|
for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
|
|
for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
|
|
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
|
|
Macroblock& block = macroblocks[mb_index];
|
|
|
|
auto& dc_table = context.dc_tables[component.dc_destination_id];
|
|
auto& ac_table = context.ac_tables[component.ac_destination_id];
|
|
|
|
auto symbol_or_error = get_next_symbol(context.huffman_stream, dc_table);
|
|
if (!symbol_or_error.has_value())
|
|
return false;
|
|
|
|
// For DC coefficients, symbol encodes the length of the coefficient.
|
|
auto dc_length = symbol_or_error.release_value();
|
|
if (dc_length > 11) {
|
|
dbg() << String::format("DC coefficient too long: %i!", dc_length);
|
|
return false;
|
|
}
|
|
|
|
auto coeff_or_error = read_huffman_bits(context.huffman_stream, dc_length);
|
|
if (!coeff_or_error.has_value())
|
|
return false;
|
|
|
|
// DC coefficients are encoded as the difference between previous and current DC values.
|
|
i32 dc_diff = coeff_or_error.release_value();
|
|
|
|
// If MSB in diff is 0, the difference is -ve. Otherwise +ve.
|
|
if (dc_length != 0 && dc_diff < (1 << (dc_length - 1)))
|
|
dc_diff -= (1 << dc_length) - 1;
|
|
|
|
i32* select_component = component.id == 1 ? block.y : (component.id == 2 ? block.cb : block.cr);
|
|
auto& previous_dc = context.previous_dc_values[cindex];
|
|
select_component[0] = previous_dc += dc_diff;
|
|
|
|
// Compute the AC coefficients.
|
|
for (int j = 1; j < 64;) {
|
|
symbol_or_error = get_next_symbol(context.huffman_stream, ac_table);
|
|
if (!symbol_or_error.has_value())
|
|
return false;
|
|
|
|
// AC symbols encode 2 pieces of information, the high 4 bits represent
|
|
// number of zeroes to be stuffed before reading the coefficient. Low 4
|
|
// bits represent the magnitude of the coefficient.
|
|
auto ac_symbol = symbol_or_error.release_value();
|
|
if (ac_symbol == 0)
|
|
break;
|
|
|
|
// ac_symbol = 0xF0 means we need to skip 16 zeroes.
|
|
u8 run_length = ac_symbol == 0xF0 ? 16 : ac_symbol >> 4;
|
|
j += run_length;
|
|
|
|
if (j >= 64) {
|
|
dbg() << String::format("Run-length exceeded boundaries. Cursor: %i, Skipping: %i!", j, run_length);
|
|
return false;
|
|
}
|
|
|
|
u8 coeff_length = ac_symbol & 0x0F;
|
|
if (coeff_length > 10) {
|
|
dbg() << String::format("AC coefficient too long: %i!", coeff_length);
|
|
return false;
|
|
}
|
|
|
|
if (coeff_length != 0) {
|
|
coeff_or_error = read_huffman_bits(context.huffman_stream, coeff_length);
|
|
if (!coeff_or_error.has_value())
|
|
return false;
|
|
i32 ac_coefficient = coeff_or_error.release_value();
|
|
if (ac_coefficient < (1 << (coeff_length - 1)))
|
|
ac_coefficient -= (1 << coeff_length) - 1;
|
|
|
|
select_component[zigzag_map[j++]] = ac_coefficient;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<Vector<Macroblock>> decode_huffman_stream(JPGLoadingContext& context)
|
|
{
|
|
Vector<Macroblock> macroblocks;
|
|
macroblocks.resize(context.mblock_meta.padded_total);
|
|
|
|
jpg_dbg("Image width: " << context.frame.width);
|
|
jpg_dbg("Image height: " << context.frame.height);
|
|
jpg_dbg("Macroblocks in a row: " << context.mblock_meta.hpadded_count);
|
|
jpg_dbg("Macroblocks in a column: " << context.mblock_meta.vpadded_count);
|
|
|
|
// Compute huffman codes for DC and AC tables.
|
|
for (auto& dc_table : context.dc_tables)
|
|
generate_huffman_codes(dc_table);
|
|
|
|
for (auto& ac_table : context.ac_tables)
|
|
generate_huffman_codes(ac_table);
|
|
|
|
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
|
|
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
|
|
u32 i = vcursor * context.mblock_meta.hpadded_count + hcursor;
|
|
if (context.dc_reset_interval > 0) {
|
|
if (i % context.dc_reset_interval == 0) {
|
|
context.previous_dc_values[0] = 0;
|
|
context.previous_dc_values[1] = 0;
|
|
context.previous_dc_values[2] = 0;
|
|
|
|
// Restart markers are stored in byte boundaries. Advance the huffman stream cursor to
|
|
// the 0th bit of the next byte.
|
|
if (context.huffman_stream.byte_offset < context.huffman_stream.stream.size()) {
|
|
if (context.huffman_stream.bit_offset > 0) {
|
|
context.huffman_stream.bit_offset = 0;
|
|
context.huffman_stream.byte_offset++;
|
|
}
|
|
|
|
// Skip the restart marker (RSTn).
|
|
context.huffman_stream.byte_offset++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!build_macroblocks(context, macroblocks, hcursor, vcursor)) {
|
|
dbg() << "Failed to build Macroblock " << i;
|
|
dbg() << "Huffman stream byte offset " << context.huffman_stream.byte_offset;
|
|
dbg() << "Huffman stream bit offset " << context.huffman_stream.bit_offset;
|
|
return {};
|
|
}
|
|
}
|
|
}
|
|
|
|
return macroblocks;
|
|
}
|
|
|
|
static inline bool bounds_okay(const size_t cursor, const size_t delta, const size_t bound)
|
|
{
|
|
return (delta + cursor) < bound;
|
|
}
|
|
|
|
static inline bool is_valid_marker(const Marker marker)
|
|
{
|
|
if (marker >= JPG_APPN0 && marker <= JPG_APPNF) {
|
|
if (marker != JPG_APPN0)
|
|
dbg() << String::format("%04x not supported yet. The decoder may fail!", marker);
|
|
return true;
|
|
}
|
|
if (marker >= JPG_RESERVED1 && marker <= JPG_RESERVEDD)
|
|
return true;
|
|
if (marker >= JPG_RST0 && marker <= JPG_RST7)
|
|
return true;
|
|
switch (marker) {
|
|
case JPG_COM:
|
|
case JPG_DHP:
|
|
case JPG_EXP:
|
|
case JPG_DHT:
|
|
case JPG_DQT:
|
|
case JPG_RST:
|
|
case JPG_SOF0:
|
|
case JPG_SOI:
|
|
case JPG_SOS:
|
|
return true;
|
|
}
|
|
|
|
if (marker >= 0xFFC0 && marker <= 0xFFCF) {
|
|
if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
|
|
dbg() << "Decoding this frame-type (SOF" << (marker & 0xf) << ") is not currently supported. Decoder will fail!";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline u16 read_be_word(BufferStream& stream)
|
|
{
|
|
u8 tmp1 = 0, tmp2 = 0;
|
|
stream >> tmp1 >> tmp2;
|
|
return ((u16)tmp1 << 8) | ((u16)tmp2);
|
|
}
|
|
|
|
static inline Marker read_marker_at_cursor(BufferStream& stream)
|
|
{
|
|
u16 marker = read_be_word(stream);
|
|
if (stream.handle_read_failure())
|
|
return JPG_INVALID;
|
|
if (is_valid_marker(marker))
|
|
return marker;
|
|
if (marker != 0xFFFF)
|
|
return JPG_INVALID;
|
|
u8 next;
|
|
do {
|
|
stream >> next;
|
|
if (stream.handle_read_failure() || next == 0x00)
|
|
return JPG_INVALID;
|
|
} while (next == 0xFF);
|
|
marker = 0xFF00 | (u16)next;
|
|
return is_valid_marker(marker) ? marker : JPG_INVALID;
|
|
}
|
|
|
|
static bool read_start_of_scan(BufferStream& stream, JPGLoadingContext& context)
|
|
{
|
|
if (context.state < JPGLoadingContext::State::FrameDecoded) {
|
|
dbg() << stream.offset() << ": SOS found before reading a SOF!";
|
|
return false;
|
|
}
|
|
|
|
u16 bytes_to_read = read_be_word(stream);
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
bytes_to_read -= 2;
|
|
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
|
|
return false;
|
|
u8 component_count;
|
|
stream >> component_count;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
if (component_count != context.component_count) {
|
|
dbg() << stream.offset()
|
|
<< String::format(": Unsupported number of components: %i!", component_count);
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < component_count; i++) {
|
|
ComponentSpec* component = nullptr;
|
|
u8 component_id;
|
|
stream >> component_id;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
component_id += context.has_zero_based_ids ? 1 : 0;
|
|
|
|
if (component_id == context.components[0].id)
|
|
component = &context.components[0];
|
|
else if (component_id == context.components[1].id)
|
|
component = &context.components[1];
|
|
else if (component_id == context.components[2].id)
|
|
component = &context.components[2];
|
|
else {
|
|
dbg() << stream.offset() << String::format(": Unsupported component id: %i!", component_id);
|
|
return false;
|
|
}
|
|
|
|
u8 table_ids;
|
|
stream >> table_ids;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
component->dc_destination_id = table_ids >> 4;
|
|
component->ac_destination_id = table_ids & 0x0F;
|
|
}
|
|
|
|
u8 spectral_selection_start;
|
|
stream >> spectral_selection_start;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
u8 spectral_selection_end;
|
|
stream >> spectral_selection_end;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
u8 successive_approximation;
|
|
stream >> successive_approximation;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
// The three values should be fixed for baseline JPEGs utilizing sequential DCT.
|
|
if (spectral_selection_start != 0 || spectral_selection_end != 63 || successive_approximation != 0) {
|
|
dbg() << stream.offset() << ": ERROR! Start of Selection: " << spectral_selection_start
|
|
<< ", End of Selection: " << spectral_selection_end
|
|
<< ", Successive Approximation: " << successive_approximation << "!";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool read_reset_marker(BufferStream& stream, JPGLoadingContext& context)
|
|
{
|
|
u16 bytes_to_read = read_be_word(stream);
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
bytes_to_read -= 2;
|
|
if (bytes_to_read != 2) {
|
|
dbg() << stream.offset() << ": Malformed reset marker found!";
|
|
return false;
|
|
}
|
|
context.dc_reset_interval = read_be_word(stream);
|
|
return true;
|
|
}
|
|
|
|
static bool read_huffman_table(BufferStream& stream, JPGLoadingContext& context)
|
|
{
|
|
i32 bytes_to_read = read_be_word(stream);
|
|
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
|
|
return false;
|
|
bytes_to_read -= 2;
|
|
while (bytes_to_read > 0) {
|
|
HuffmanTableSpec table;
|
|
u8 table_info;
|
|
stream >> table_info;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
u8 table_type = table_info >> 4;
|
|
u8 table_destination_id = table_info & 0x0F;
|
|
if (table_type > 1) {
|
|
dbg() << stream.offset() << String::format(": Unrecognized huffman table: %i!", table_type);
|
|
return false;
|
|
}
|
|
if (table_destination_id > 3) {
|
|
dbg() << stream.offset()
|
|
<< String::format(": Invalid huffman table destination id: %i!", table_destination_id);
|
|
return false;
|
|
}
|
|
table.type = table_type;
|
|
table.destination_id = table_destination_id;
|
|
u32 total_codes = 0;
|
|
|
|
// Read code counts. At each index K, the value represents the number of K+1 bit codes in this header.
|
|
for (int i = 0; i < 16; i++) {
|
|
u8 count;
|
|
stream >> count;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
total_codes += count;
|
|
table.code_counts[i] = count;
|
|
}
|
|
|
|
table.codes.ensure_capacity(total_codes);
|
|
|
|
// Read symbols. Read X bytes, where X is the sum of the counts of codes read in the previous step.
|
|
for (u32 i = 0; i < total_codes; i++) {
|
|
u8 symbol = 0;
|
|
stream >> symbol;
|
|
table.symbols.append(symbol);
|
|
}
|
|
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
|
|
if (table_type == 0)
|
|
context.dc_tables.append(move(table));
|
|
else
|
|
context.ac_tables.append(move(table));
|
|
|
|
bytes_to_read -= 1 + 16 + total_codes;
|
|
}
|
|
if (bytes_to_read != 0) {
|
|
dbg() << stream.offset() << ": Extra bytes detected in huffman header!";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool validate_luma_and_modify_context(const ComponentSpec& luma, JPGLoadingContext& context)
|
|
{
|
|
if ((luma.hsample_factor == 1 || luma.hsample_factor == 2) && (luma.vsample_factor == 1 || luma.vsample_factor == 2)) {
|
|
context.mblock_meta.hpadded_count += luma.hsample_factor == 1 ? 0 : context.mblock_meta.hcount % 2;
|
|
context.mblock_meta.vpadded_count += luma.vsample_factor == 1 ? 0 : context.mblock_meta.vcount % 2;
|
|
context.mblock_meta.padded_total = context.mblock_meta.hpadded_count * context.mblock_meta.vpadded_count;
|
|
// For easy reference to relevant sample factors.
|
|
context.hsample_factor = luma.hsample_factor;
|
|
context.vsample_factor = luma.vsample_factor;
|
|
jpg_dbg(String::format("Horizontal Subsampling Factor: %i", luma.hsample_factor));
|
|
jpg_dbg(String::format("Vertical Subsampling Factor: %i", luma.vsample_factor));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline void set_macroblock_metadata(JPGLoadingContext& context)
|
|
{
|
|
context.mblock_meta.hcount = (context.frame.width + 7) / 8;
|
|
context.mblock_meta.vcount = (context.frame.height + 7) / 8;
|
|
context.mblock_meta.hpadded_count = context.mblock_meta.hcount;
|
|
context.mblock_meta.vpadded_count = context.mblock_meta.vcount;
|
|
context.mblock_meta.total = context.mblock_meta.hcount * context.mblock_meta.vcount;
|
|
}
|
|
|
|
static bool read_start_of_frame(BufferStream& stream, JPGLoadingContext& context)
|
|
{
|
|
if (context.state == JPGLoadingContext::FrameDecoded) {
|
|
dbg() << stream.offset() << ": SOF repeated!";
|
|
return false;
|
|
}
|
|
|
|
i32 bytes_to_read = read_be_word(stream);
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
|
|
bytes_to_read -= 2;
|
|
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
|
|
return false;
|
|
|
|
stream >> context.frame.precision;
|
|
if (context.frame.precision != 8) {
|
|
dbg() << stream.offset() << ": SOF precision != 8!";
|
|
return false;
|
|
}
|
|
|
|
context.frame.height = read_be_word(stream);
|
|
context.frame.width = read_be_word(stream);
|
|
if (!context.frame.width || !context.frame.height) {
|
|
dbg() << stream.offset() << ": ERROR! Image height: " << context.frame.height << ", Image width: "
|
|
<< context.frame.width << "!";
|
|
return false;
|
|
}
|
|
set_macroblock_metadata(context);
|
|
|
|
stream >> context.component_count;
|
|
if (context.component_count != 1 && context.component_count != 3) {
|
|
dbg() << stream.offset() << ": Unsupported number of components in SOF: "
|
|
<< context.component_count << "!";
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < context.component_count; i++) {
|
|
ComponentSpec& component = context.components[i];
|
|
|
|
stream >> component.id;
|
|
if (i == 0)
|
|
context.has_zero_based_ids = component.id == 0;
|
|
component.id += context.has_zero_based_ids ? 1 : 0;
|
|
|
|
u8 subsample_factors = 0;
|
|
stream >> subsample_factors;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
component.hsample_factor = subsample_factors >> 4;
|
|
component.vsample_factor = subsample_factors & 0x0F;
|
|
|
|
if (component.id == 1) {
|
|
// By convention, downsampling is applied only on chroma components. So we should
|
|
// hope to see the maximum sampling factor in the luma component.
|
|
if (!validate_luma_and_modify_context(component, context)) {
|
|
dbg() << stream.offset() << ": Unsupported luma subsampling factors: "
|
|
<< "horizontal: " << component.hsample_factor << ", vertical: " << component.vsample_factor;
|
|
return false;
|
|
}
|
|
} else {
|
|
if (component.hsample_factor != 1 || component.vsample_factor != 1) {
|
|
dbg() << stream.offset() << ": Unsupported chroma subsampling factors: "
|
|
<< "horizontal: " << component.hsample_factor << ", vertical: " << component.vsample_factor;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
stream >> component.qtable_id;
|
|
if (component.qtable_id > 1) {
|
|
dbg() << stream.offset() << ": Unsupported quantization table id: "
|
|
<< component.qtable_id << "!";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool read_quantization_table(BufferStream& stream, JPGLoadingContext& context)
|
|
{
|
|
i32 bytes_to_read = read_be_word(stream);
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
bytes_to_read -= 2;
|
|
if (!bounds_okay(stream.offset(), bytes_to_read, context.data_size))
|
|
return false;
|
|
while (bytes_to_read > 0) {
|
|
u8 info_byte;
|
|
stream >> info_byte;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
u8 element_unit_hint = info_byte >> 4;
|
|
if (element_unit_hint > 1) {
|
|
dbg() << stream.offset()
|
|
<< String::format(": Unsupported unit hint in quantization table: %i!", element_unit_hint);
|
|
return false;
|
|
}
|
|
u8 table_id = info_byte & 0x0F;
|
|
if (table_id > 1) {
|
|
dbg() << stream.offset() << String::format(": Unsupported quantization table id: %i!", table_id);
|
|
return false;
|
|
}
|
|
u32* table = table_id == 0 ? context.luma_table : context.chroma_table;
|
|
for (int i = 0; i < 64; i++) {
|
|
if (element_unit_hint == 0) {
|
|
u8 tmp = 0;
|
|
stream >> tmp;
|
|
table[zigzag_map[i]] = tmp;
|
|
} else
|
|
table[zigzag_map[i]] = read_be_word(stream);
|
|
}
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
|
|
bytes_to_read -= 1 + (element_unit_hint == 0 ? 64 : 128);
|
|
}
|
|
if (bytes_to_read != 0) {
|
|
dbg() << stream.offset() << ": Invalid length for one or more quantization tables!";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool skip_marker_with_length(BufferStream& stream)
|
|
{
|
|
u16 bytes_to_skip = read_be_word(stream);
|
|
bytes_to_skip -= 2;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
stream.advance(bytes_to_skip);
|
|
return !stream.handle_read_failure();
|
|
}
|
|
|
|
void dequantize(JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
|
|
{
|
|
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
|
|
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
|
|
for (u8 cindex = 0; cindex < context.component_count; cindex++) {
|
|
auto& component = context.components[cindex];
|
|
const u32* table = component.qtable_id == 0 ? context.luma_table : context.chroma_table;
|
|
for (u32 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
|
|
for (u32 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
|
|
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
|
|
Macroblock& block = macroblocks[mb_index];
|
|
int* block_component = cindex == 0 ? block.y : (cindex == 1 ? block.cb : block.cr);
|
|
for (u32 k = 0; k < 64; k++)
|
|
block_component[k] *= table[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void inverse_dct(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
|
|
{
|
|
static const float m0 = 2.0 * cos(1.0 / 16.0 * 2.0 * M_PI);
|
|
static const float m1 = 2.0 * cos(2.0 / 16.0 * 2.0 * M_PI);
|
|
static const float m3 = 2.0 * cos(2.0 / 16.0 * 2.0 * M_PI);
|
|
static const float m5 = 2.0 * cos(3.0 / 16.0 * 2.0 * M_PI);
|
|
static const float m2 = m0 - m5;
|
|
static const float m4 = m0 + m5;
|
|
static const float s0 = cos(0.0 / 16.0 * M_PI) / sqrt(8);
|
|
static const float s1 = cos(1.0 / 16.0 * M_PI) / 2.0;
|
|
static const float s2 = cos(2.0 / 16.0 * M_PI) / 2.0;
|
|
static const float s3 = cos(3.0 / 16.0 * M_PI) / 2.0;
|
|
static const float s4 = cos(4.0 / 16.0 * M_PI) / 2.0;
|
|
static const float s5 = cos(5.0 / 16.0 * M_PI) / 2.0;
|
|
static const float s6 = cos(6.0 / 16.0 * M_PI) / 2.0;
|
|
static const float s7 = cos(7.0 / 16.0 * M_PI) / 2.0;
|
|
|
|
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
|
|
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
|
|
for (u8 cindex = 0; cindex < context.component_count; cindex++) {
|
|
auto& component = context.components[cindex];
|
|
for (u8 vfactor_i = 0; vfactor_i < component.vsample_factor; vfactor_i++) {
|
|
for (u8 hfactor_i = 0; hfactor_i < component.hsample_factor; hfactor_i++) {
|
|
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hfactor_i + hcursor);
|
|
Macroblock& block = macroblocks[mb_index];
|
|
i32* block_component = cindex == 0 ? block.y : (cindex == 1 ? block.cb : block.cr);
|
|
for (u32 k = 0; k < 8; ++k) {
|
|
const float g0 = block_component[0 * 8 + k] * s0;
|
|
const float g1 = block_component[4 * 8 + k] * s4;
|
|
const float g2 = block_component[2 * 8 + k] * s2;
|
|
const float g3 = block_component[6 * 8 + k] * s6;
|
|
const float g4 = block_component[5 * 8 + k] * s5;
|
|
const float g5 = block_component[1 * 8 + k] * s1;
|
|
const float g6 = block_component[7 * 8 + k] * s7;
|
|
const float g7 = block_component[3 * 8 + k] * s3;
|
|
|
|
const float f0 = g0;
|
|
const float f1 = g1;
|
|
const float f2 = g2;
|
|
const float f3 = g3;
|
|
const float f4 = g4 - g7;
|
|
const float f5 = g5 + g6;
|
|
const float f6 = g5 - g6;
|
|
const float f7 = g4 + g7;
|
|
|
|
const float e0 = f0;
|
|
const float e1 = f1;
|
|
const float e2 = f2 - f3;
|
|
const float e3 = f2 + f3;
|
|
const float e4 = f4;
|
|
const float e5 = f5 - f7;
|
|
const float e6 = f6;
|
|
const float e7 = f5 + f7;
|
|
const float e8 = f4 + f6;
|
|
|
|
const float d0 = e0;
|
|
const float d1 = e1;
|
|
const float d2 = e2 * m1;
|
|
const float d3 = e3;
|
|
const float d4 = e4 * m2;
|
|
const float d5 = e5 * m3;
|
|
const float d6 = e6 * m4;
|
|
const float d7 = e7;
|
|
const float d8 = e8 * m5;
|
|
|
|
const float c0 = d0 + d1;
|
|
const float c1 = d0 - d1;
|
|
const float c2 = d2 - d3;
|
|
const float c3 = d3;
|
|
const float c4 = d4 + d8;
|
|
const float c5 = d5 + d7;
|
|
const float c6 = d6 - d8;
|
|
const float c7 = d7;
|
|
const float c8 = c5 - c6;
|
|
|
|
const float b0 = c0 + c3;
|
|
const float b1 = c1 + c2;
|
|
const float b2 = c1 - c2;
|
|
const float b3 = c0 - c3;
|
|
const float b4 = c4 - c8;
|
|
const float b5 = c8;
|
|
const float b6 = c6 - c7;
|
|
const float b7 = c7;
|
|
|
|
block_component[0 * 8 + k] = b0 + b7;
|
|
block_component[1 * 8 + k] = b1 + b6;
|
|
block_component[2 * 8 + k] = b2 + b5;
|
|
block_component[3 * 8 + k] = b3 + b4;
|
|
block_component[4 * 8 + k] = b3 - b4;
|
|
block_component[5 * 8 + k] = b2 - b5;
|
|
block_component[6 * 8 + k] = b1 - b6;
|
|
block_component[7 * 8 + k] = b0 - b7;
|
|
}
|
|
for (u32 l = 0; l < 8; ++l) {
|
|
const float g0 = block_component[l * 8 + 0] * s0;
|
|
const float g1 = block_component[l * 8 + 4] * s4;
|
|
const float g2 = block_component[l * 8 + 2] * s2;
|
|
const float g3 = block_component[l * 8 + 6] * s6;
|
|
const float g4 = block_component[l * 8 + 5] * s5;
|
|
const float g5 = block_component[l * 8 + 1] * s1;
|
|
const float g6 = block_component[l * 8 + 7] * s7;
|
|
const float g7 = block_component[l * 8 + 3] * s3;
|
|
|
|
const float f0 = g0;
|
|
const float f1 = g1;
|
|
const float f2 = g2;
|
|
const float f3 = g3;
|
|
const float f4 = g4 - g7;
|
|
const float f5 = g5 + g6;
|
|
const float f6 = g5 - g6;
|
|
const float f7 = g4 + g7;
|
|
|
|
const float e0 = f0;
|
|
const float e1 = f1;
|
|
const float e2 = f2 - f3;
|
|
const float e3 = f2 + f3;
|
|
const float e4 = f4;
|
|
const float e5 = f5 - f7;
|
|
const float e6 = f6;
|
|
const float e7 = f5 + f7;
|
|
const float e8 = f4 + f6;
|
|
|
|
const float d0 = e0;
|
|
const float d1 = e1;
|
|
const float d2 = e2 * m1;
|
|
const float d3 = e3;
|
|
const float d4 = e4 * m2;
|
|
const float d5 = e5 * m3;
|
|
const float d6 = e6 * m4;
|
|
const float d7 = e7;
|
|
const float d8 = e8 * m5;
|
|
|
|
const float c0 = d0 + d1;
|
|
const float c1 = d0 - d1;
|
|
const float c2 = d2 - d3;
|
|
const float c3 = d3;
|
|
const float c4 = d4 + d8;
|
|
const float c5 = d5 + d7;
|
|
const float c6 = d6 - d8;
|
|
const float c7 = d7;
|
|
const float c8 = c5 - c6;
|
|
|
|
const float b0 = c0 + c3;
|
|
const float b1 = c1 + c2;
|
|
const float b2 = c1 - c2;
|
|
const float b3 = c0 - c3;
|
|
const float b4 = c4 - c8;
|
|
const float b5 = c8;
|
|
const float b6 = c6 - c7;
|
|
const float b7 = c7;
|
|
|
|
block_component[l * 8 + 0] = b0 + b7;
|
|
block_component[l * 8 + 1] = b1 + b6;
|
|
block_component[l * 8 + 2] = b2 + b5;
|
|
block_component[l * 8 + 3] = b3 + b4;
|
|
block_component[l * 8 + 4] = b3 - b4;
|
|
block_component[l * 8 + 5] = b2 - b5;
|
|
block_component[l * 8 + 6] = b1 - b6;
|
|
block_component[l * 8 + 7] = b0 - b7;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ycbcr_to_rgb(const JPGLoadingContext& context, Vector<Macroblock>& macroblocks)
|
|
{
|
|
for (u32 vcursor = 0; vcursor < context.mblock_meta.vcount; vcursor += context.vsample_factor) {
|
|
for (u32 hcursor = 0; hcursor < context.mblock_meta.hcount; hcursor += context.hsample_factor) {
|
|
const u32 chroma_block_index = vcursor * context.mblock_meta.hpadded_count + hcursor;
|
|
const Macroblock& chroma = macroblocks[chroma_block_index];
|
|
// Overflows are intentional.
|
|
for (u8 vfactor_i = context.vsample_factor - 1; vfactor_i < context.vsample_factor; --vfactor_i) {
|
|
for (u8 hfactor_i = context.hsample_factor - 1; hfactor_i < context.hsample_factor; --hfactor_i) {
|
|
u32 mb_index = (vcursor + vfactor_i) * context.mblock_meta.hpadded_count + (hcursor + hfactor_i);
|
|
i32* y = macroblocks[mb_index].y;
|
|
i32* cb = macroblocks[mb_index].cb;
|
|
i32* cr = macroblocks[mb_index].cr;
|
|
for (u8 i = 7; i < 8; --i) {
|
|
for (u8 j = 7; j < 8; --j) {
|
|
const u8 pixel = i * 8 + j;
|
|
const u32 chroma_pxrow = (i / context.vsample_factor) + 4 * vfactor_i;
|
|
const u32 chroma_pxcol = (j / context.hsample_factor) + 4 * hfactor_i;
|
|
const u32 chroma_pixel = chroma_pxrow * 8 + chroma_pxcol;
|
|
int r = y[pixel] + 1.402f * chroma.cr[chroma_pixel] + 128;
|
|
int g = y[pixel] - 0.344f * chroma.cb[chroma_pixel] - 0.714f * chroma.cr[chroma_pixel] + 128;
|
|
int b = y[pixel] + 1.772f * chroma.cb[chroma_pixel] + 128;
|
|
y[pixel] = r < 0 ? 0 : (r > 255 ? 255 : r);
|
|
cb[pixel] = g < 0 ? 0 : (g > 255 ? 255 : g);
|
|
cr[pixel] = b < 0 ? 0 : (b > 255 ? 255 : b);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void compose_bitmap(JPGLoadingContext& context, const Vector<Macroblock>& macroblocks)
|
|
{
|
|
context.bitmap = Bitmap::create_purgeable(BitmapFormat::RGB32, { context.frame.width, context.frame.height });
|
|
|
|
for (u32 y = context.frame.height - 1; y < context.frame.height; y--) {
|
|
const u32 block_row = y / 8;
|
|
const u32 pixel_row = y % 8;
|
|
for (u32 x = 0; x < context.frame.width; x++) {
|
|
const u32 block_column = x / 8;
|
|
auto& block = macroblocks[block_row * context.mblock_meta.hpadded_count + block_column];
|
|
const u32 pixel_column = x % 8;
|
|
const u32 pixel_index = pixel_row * 8 + pixel_column;
|
|
const Color color { (u8)block.y[pixel_index], (u8)block.cb[pixel_index], (u8)block.cr[pixel_index] };
|
|
context.bitmap->set_pixel(x, y, color);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool parse_header(BufferStream& stream, JPGLoadingContext& context)
|
|
{
|
|
auto marker = read_marker_at_cursor(stream);
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
if (marker != JPG_SOI) {
|
|
dbg() << stream.offset() << String::format(": SOI not found: %x!", marker);
|
|
return false;
|
|
}
|
|
for (;;) {
|
|
marker = read_marker_at_cursor(stream);
|
|
|
|
// Set frame type if the marker marks a new frame.
|
|
if (marker >= 0xFFC0 && marker <= 0xFFCF) {
|
|
// Ignore interleaved markers.
|
|
if (marker != 0xFFC4 && marker != 0xFFC8 && marker != 0xFFCC) {
|
|
context.frame.type = static_cast<StartOfFrame::FrameType>(marker & 0xF);
|
|
}
|
|
}
|
|
|
|
switch (marker) {
|
|
case JPG_INVALID:
|
|
case JPG_RST0:
|
|
case JPG_RST1:
|
|
case JPG_RST2:
|
|
case JPG_RST3:
|
|
case JPG_RST4:
|
|
case JPG_RST5:
|
|
case JPG_RST6:
|
|
case JPG_RST7:
|
|
case JPG_SOI:
|
|
case JPG_EOI:
|
|
dbg() << stream.offset() << String::format(": Unexpected marker %x!", marker);
|
|
return false;
|
|
case JPG_SOF0:
|
|
if (!read_start_of_frame(stream, context))
|
|
return false;
|
|
context.state = JPGLoadingContext::FrameDecoded;
|
|
break;
|
|
case JPG_DQT:
|
|
if (!read_quantization_table(stream, context))
|
|
return false;
|
|
break;
|
|
case JPG_RST:
|
|
if (!read_reset_marker(stream, context))
|
|
return false;
|
|
break;
|
|
case JPG_DHT:
|
|
if (!read_huffman_table(stream, context))
|
|
return false;
|
|
break;
|
|
case JPG_SOS:
|
|
return read_start_of_scan(stream, context);
|
|
default:
|
|
if (!skip_marker_with_length(stream)) {
|
|
dbg() << stream.offset() << String::format(": Error skipping marker: %x!", marker);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
static bool scan_huffman_stream(BufferStream& stream, JPGLoadingContext& context)
|
|
{
|
|
u8 last_byte;
|
|
u8 current_byte;
|
|
stream >> current_byte;
|
|
if (stream.handle_read_failure())
|
|
return false;
|
|
|
|
for (;;) {
|
|
last_byte = current_byte;
|
|
stream >> current_byte;
|
|
if (stream.handle_read_failure()) {
|
|
dbg() << stream.offset() << ": EOI not found!";
|
|
return false;
|
|
}
|
|
|
|
if (last_byte == 0xFF) {
|
|
if (current_byte == 0xFF)
|
|
continue;
|
|
if (current_byte == 0x00) {
|
|
stream >> current_byte;
|
|
context.huffman_stream.stream.append(last_byte);
|
|
continue;
|
|
}
|
|
Marker marker = 0xFF00 | current_byte;
|
|
if (marker == JPG_EOI)
|
|
return true;
|
|
if (marker >= JPG_RST0 && marker <= JPG_RST7) {
|
|
context.huffman_stream.stream.append(marker);
|
|
stream >> current_byte;
|
|
continue;
|
|
}
|
|
dbg() << stream.offset() << String::format(": Invalid marker: %x!", marker);
|
|
return false;
|
|
} else {
|
|
context.huffman_stream.stream.append(last_byte);
|
|
}
|
|
}
|
|
|
|
ASSERT_NOT_REACHED();
|
|
}
|
|
|
|
static bool decode_jpg(JPGLoadingContext& context)
|
|
{
|
|
ByteBuffer buffer = ByteBuffer::wrap(context.data, context.data_size);
|
|
BufferStream stream(buffer);
|
|
if (!parse_header(stream, context))
|
|
return false;
|
|
if (!scan_huffman_stream(stream, context))
|
|
return false;
|
|
|
|
auto result = decode_huffman_stream(context);
|
|
if (!result.has_value()) {
|
|
dbg() << stream.offset() << ": Failed to decode Macroblocks!";
|
|
return false;
|
|
}
|
|
|
|
auto macroblocks = result.release_value();
|
|
dbg() << String::format("%i macroblocks decoded successfully :^)", macroblocks.size());
|
|
dequantize(context, macroblocks);
|
|
inverse_dct(context, macroblocks);
|
|
ycbcr_to_rgb(context, macroblocks);
|
|
compose_bitmap(context, macroblocks);
|
|
return true;
|
|
}
|
|
|
|
static RefPtr<Gfx::Bitmap> load_jpg_impl(const u8* data, size_t data_size)
|
|
{
|
|
JPGLoadingContext context;
|
|
context.data = data;
|
|
context.data_size = data_size;
|
|
|
|
if (!decode_jpg(context))
|
|
return nullptr;
|
|
|
|
return context.bitmap;
|
|
}
|
|
|
|
RefPtr<Gfx::Bitmap> load_jpg(const StringView& path)
|
|
{
|
|
MappedFile mapped_file(path);
|
|
if (!mapped_file.is_valid()) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto bitmap = load_jpg_impl((const u8*)mapped_file.data(), mapped_file.size());
|
|
if (bitmap)
|
|
bitmap->set_mmap_name(String::format("Gfx::Bitmap [%dx%d] - Decoded JPG: %s", bitmap->width(), bitmap->height(), LexicalPath::canonicalized_path(path).characters()));
|
|
return bitmap;
|
|
}
|
|
|
|
RefPtr<Gfx::Bitmap> load_jpg_from_memory(const u8* data, size_t length)
|
|
{
|
|
auto bitmap = load_jpg_impl(data, length);
|
|
if (bitmap)
|
|
bitmap->set_mmap_name(String::format("Gfx::Bitmap [%dx%d] - Decoded jpg: <memory>", bitmap->width(), bitmap->height()));
|
|
return bitmap;
|
|
}
|
|
|
|
JPGImageDecoderPlugin::JPGImageDecoderPlugin(const u8* data, size_t size)
|
|
{
|
|
m_context = make<JPGLoadingContext>();
|
|
m_context->data = data;
|
|
m_context->data_size = size;
|
|
m_context->huffman_stream.stream.ensure_capacity(50 * KB);
|
|
}
|
|
|
|
JPGImageDecoderPlugin::~JPGImageDecoderPlugin()
|
|
{
|
|
}
|
|
|
|
IntSize JPGImageDecoderPlugin::size()
|
|
{
|
|
if (m_context->state == JPGLoadingContext::State::Error)
|
|
return {};
|
|
if (m_context->state >= JPGLoadingContext::State::FrameDecoded)
|
|
return { m_context->frame.width, m_context->frame.height };
|
|
|
|
return {};
|
|
}
|
|
|
|
RefPtr<Gfx::Bitmap> JPGImageDecoderPlugin::bitmap()
|
|
{
|
|
if (m_context->state == JPGLoadingContext::State::Error)
|
|
return nullptr;
|
|
if (m_context->state < JPGLoadingContext::State::BitmapDecoded) {
|
|
if (!decode_jpg(*m_context)) {
|
|
m_context->state = JPGLoadingContext::State::Error;
|
|
return nullptr;
|
|
}
|
|
m_context->state = JPGLoadingContext::State::BitmapDecoded;
|
|
}
|
|
|
|
return m_context->bitmap;
|
|
}
|
|
|
|
void JPGImageDecoderPlugin::set_volatile()
|
|
{
|
|
if (m_context->bitmap)
|
|
m_context->bitmap->set_volatile();
|
|
}
|
|
|
|
bool JPGImageDecoderPlugin::set_nonvolatile()
|
|
{
|
|
if (!m_context->bitmap)
|
|
return false;
|
|
return m_context->bitmap->set_nonvolatile();
|
|
}
|
|
|
|
bool JPGImageDecoderPlugin::sniff()
|
|
{
|
|
return m_context->data_size > 3
|
|
&& m_context->data[0] == 0xFF
|
|
&& m_context->data[1] == 0xD8
|
|
&& m_context->data[2] == 0xFF;
|
|
}
|
|
|
|
bool JPGImageDecoderPlugin::is_animated()
|
|
{
|
|
return false;
|
|
}
|
|
|
|
size_t JPGImageDecoderPlugin::loop_count()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
size_t JPGImageDecoderPlugin::frame_count()
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
ImageFrameDescriptor JPGImageDecoderPlugin::frame(size_t i)
|
|
{
|
|
if (i > 0) {
|
|
return { bitmap(), 0 };
|
|
}
|
|
return {};
|
|
}
|
|
}
|