mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 23:50:19 +00:00
5a8781393a
Related: - video detailing the process of writing these tests: https://www.youtube.com/watch?v=enxglLlALvI - PR fixing bugs the above effort found: https://github.com/SerenityOS/serenity/pull/22025
261 lines
6.6 KiB
C++
261 lines
6.6 KiB
C++
/*
|
|
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <LibTest/TestCase.h>
|
|
|
|
#include <AK/Complex.h>
|
|
|
|
using namespace Test::Randomized;
|
|
|
|
namespace {
|
|
|
|
Complex<f64> gen_complex()
|
|
{
|
|
auto r = Gen::number_f64();
|
|
auto i = Gen::number_f64();
|
|
return Complex<f64>(r, i);
|
|
}
|
|
|
|
Complex<f64> gen_complex(f64 min, f64 max)
|
|
{
|
|
auto r = Gen::number_f64(min, max);
|
|
auto i = Gen::number_f64(min, max);
|
|
return Complex<f64>(r, i);
|
|
}
|
|
|
|
}
|
|
|
|
template<typename T>
|
|
void expect_approximate_complex(Complex<T> a, Complex<T> b)
|
|
{
|
|
EXPECT_APPROXIMATE(a.real(), b.real());
|
|
EXPECT_APPROXIMATE(a.imag(), b.imag());
|
|
}
|
|
|
|
TEST_CASE(Complex)
|
|
{
|
|
auto a = Complex<float> { 1.f, 1.f };
|
|
auto b = complex_real_unit<double> + Complex<double> { 0, 1 } * 1;
|
|
EXPECT_APPROXIMATE(a.real(), b.real());
|
|
EXPECT_APPROXIMATE(a.imag(), b.imag());
|
|
|
|
#ifdef AKCOMPLEX_CAN_USE_MATH_H
|
|
EXPECT_APPROXIMATE((complex_imag_unit<float> - complex_imag_unit<float>).magnitude(), 0);
|
|
EXPECT_APPROXIMATE((complex_imag_unit<float> + complex_real_unit<float>).magnitude(), sqrt(2));
|
|
|
|
auto c = Complex<double> { 0., 1. };
|
|
auto d = Complex<double>::from_polar(1., M_PI / 2.);
|
|
EXPECT_APPROXIMATE(c.real(), d.real());
|
|
EXPECT_APPROXIMATE(c.imag(), d.imag());
|
|
|
|
c = Complex<double> { -1., 1. };
|
|
d = Complex<double>::from_polar(sqrt(2.), 3. * M_PI / 4.);
|
|
EXPECT_APPROXIMATE(c.real(), d.real());
|
|
EXPECT_APPROXIMATE(c.imag(), d.imag());
|
|
EXPECT_APPROXIMATE(d.phase(), 3. * M_PI / 4.);
|
|
EXPECT_APPROXIMATE(c.magnitude(), d.magnitude());
|
|
EXPECT_APPROXIMATE(c.magnitude(), sqrt(2.));
|
|
#endif
|
|
EXPECT_EQ((complex_imag_unit<double> * complex_imag_unit<double>).real(), -1.);
|
|
EXPECT_EQ((complex_imag_unit<double> / complex_imag_unit<double>).real(), 1.);
|
|
|
|
EXPECT_EQ(Complex(1., 10.) == (Complex<double>(1., 0.) + Complex(0., 10.)), true);
|
|
EXPECT_EQ(Complex(1., 10.) != (Complex<double>(1., 1.) + Complex(0., 10.)), true);
|
|
#ifdef AKCOMPLEX_CAN_USE_MATH_H
|
|
EXPECT_EQ(approx_eq(Complex<int>(1), Complex<float>(1.0000004f)), true);
|
|
EXPECT_APPROXIMATE(cexp(Complex<double>(0., 1.) * M_PI).real(), -1.);
|
|
#endif
|
|
}
|
|
|
|
TEST_CASE(real_operators_regression)
|
|
{
|
|
{
|
|
auto c = Complex(0., 0.);
|
|
c += 1;
|
|
EXPECT_EQ(c.real(), 1);
|
|
}
|
|
{
|
|
auto c = Complex(0., 0.);
|
|
c -= 1;
|
|
EXPECT_EQ(c.real(), -1);
|
|
}
|
|
{
|
|
auto c1 = Complex(1., 1.);
|
|
auto c2 = 1 - c1;
|
|
EXPECT_EQ(c2.real(), 0);
|
|
EXPECT_EQ(c2.imag(), -1);
|
|
}
|
|
{
|
|
auto c1 = Complex(1., 1.);
|
|
auto c2 = 1 / c1;
|
|
EXPECT_EQ(c2.real(), 0.5);
|
|
EXPECT_EQ(c2.imag(), -0.5);
|
|
}
|
|
}
|
|
|
|
TEST_CASE(constructor_0_is_origin)
|
|
{
|
|
auto c = Complex<f64>();
|
|
EXPECT_EQ(c.real(), 0L);
|
|
EXPECT_EQ(c.imag(), 0L);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(constructor_1)
|
|
{
|
|
GEN(r, Gen::number_f64());
|
|
auto c = Complex<f64>(r);
|
|
EXPECT_EQ(c.real(), r);
|
|
EXPECT_EQ(c.imag(), 0L);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(constructor_2)
|
|
{
|
|
GEN(r, Gen::number_f64());
|
|
GEN(i, Gen::number_f64());
|
|
auto c = Complex<f64>(r, i);
|
|
EXPECT_EQ(c.real(), r);
|
|
EXPECT_EQ(c.imag(), i);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(magnitude_squared)
|
|
{
|
|
GEN(c, gen_complex());
|
|
auto magnitude_squared = c.magnitude_squared();
|
|
auto magnitude = c.magnitude();
|
|
EXPECT_APPROXIMATE(magnitude_squared, magnitude * magnitude);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(from_polar_magnitude)
|
|
{
|
|
// Magnitude only makes sense non-negative, but the library allows it to be negative.
|
|
GEN(m, Gen::number_f64(-1000, 1000));
|
|
GEN(p, Gen::number_f64(-1000, 1000));
|
|
auto c = Complex<f64>::from_polar(m, p);
|
|
EXPECT_APPROXIMATE(c.magnitude(), abs(m));
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(from_polar_phase)
|
|
{
|
|
// To have a meaningful phase, magnitude needs to be >0.
|
|
GEN(m, Gen::number_f64(1, 1000));
|
|
GEN(p, Gen::number_f64(-1000, 1000));
|
|
|
|
auto c = Complex<f64>::from_polar(m, p);
|
|
|
|
// Returned phase is in the (-pi,pi] interval.
|
|
// We need to mod from our randomly generated [-1000,1000] interval]
|
|
// down to [0,2pi) or (-2pi,0] depending on our sign.
|
|
// Then we can adjust and get into the -pi..pi range by adding/subtracting
|
|
// one last 2pi.
|
|
auto wanted_p = fmod(p, 2 * M_PI);
|
|
if (wanted_p > M_PI)
|
|
wanted_p -= 2 * M_PI;
|
|
else if (wanted_p < -M_PI)
|
|
wanted_p += 2 * M_PI;
|
|
|
|
EXPECT_APPROXIMATE(c.phase(), wanted_p);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(imag_untouched_c_plus_r)
|
|
{
|
|
GEN(c1, gen_complex());
|
|
GEN(r2, Gen::number_f64());
|
|
auto c2 = c1 + r2;
|
|
EXPECT_EQ(c2.imag(), c1.imag());
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(imag_untouched_c_minus_r)
|
|
{
|
|
GEN(c1, gen_complex());
|
|
GEN(r2, Gen::number_f64());
|
|
auto c2 = c1 - r2;
|
|
EXPECT_EQ(c2.imag(), c1.imag());
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(assignment_same_as_binop_plus)
|
|
{
|
|
GEN(c1, gen_complex());
|
|
GEN(c2, gen_complex());
|
|
auto out1 = c1 + c2;
|
|
auto out2 = c1;
|
|
out2 += c2;
|
|
EXPECT_EQ(out2, out1);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(assignment_same_as_binop_minus)
|
|
{
|
|
GEN(c1, gen_complex());
|
|
GEN(c2, gen_complex());
|
|
auto out1 = c1 - c2;
|
|
auto out2 = c1;
|
|
out2 -= c2;
|
|
EXPECT_EQ(out2, out1);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(assignment_same_as_binop_mult)
|
|
{
|
|
GEN(c1, gen_complex(-1000, 1000));
|
|
GEN(c2, gen_complex(-1000, 1000));
|
|
auto out1 = c1 * c2;
|
|
auto out2 = c1;
|
|
out2 *= c2;
|
|
EXPECT_EQ(out2, out1);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(assignment_same_as_binop_div)
|
|
{
|
|
GEN(c1, gen_complex(-1000, 1000));
|
|
GEN(c2, gen_complex(-1000, 1000));
|
|
auto out1 = c1 / c2;
|
|
auto out2 = c1;
|
|
out2 /= c2;
|
|
EXPECT_EQ(out2, out1);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(commutativity_c_c)
|
|
{
|
|
GEN(c1, gen_complex());
|
|
GEN(c2, gen_complex());
|
|
expect_approximate_complex(c1 + c2, c2 + c1);
|
|
expect_approximate_complex(c1 * c2, c2 * c1);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(commutativity_c_r)
|
|
{
|
|
GEN(c, gen_complex());
|
|
GEN(r, Gen::number_f64());
|
|
expect_approximate_complex(r + c, c + r);
|
|
expect_approximate_complex(r * c, c * r);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(unary_plus_noop)
|
|
{
|
|
GEN(c, gen_complex());
|
|
EXPECT_EQ(+c, c);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(unary_minus_inverse)
|
|
{
|
|
GEN(c, gen_complex());
|
|
expect_approximate_complex(-(-c), c);
|
|
}
|
|
|
|
RANDOMIZED_TEST_CASE(wrapping_real)
|
|
{
|
|
GEN(c, gen_complex(-1000, 1000));
|
|
GEN(r, Gen::number_f64(-1000, 1000));
|
|
auto cr = Complex<f64>(r);
|
|
|
|
expect_approximate_complex(r + c, cr + c);
|
|
expect_approximate_complex(r - c, cr - c);
|
|
expect_approximate_complex(r * c, cr * c);
|
|
expect_approximate_complex(r / c, cr / c);
|
|
|
|
expect_approximate_complex(c + r, c + cr);
|
|
expect_approximate_complex(c - r, c - cr);
|
|
expect_approximate_complex(c * r, c * cr);
|
|
expect_approximate_complex(c / r, c / cr);
|
|
}
|