ladybird/AK/Variant.h
Timothy Flynn d2a304ae87 AK: Specialize TypeList for Variant types
This allows callers to use the following semantics:

    using MyVariant = Variant<Empty, int>;

    template<typename T>
    size_t size() { return TypeList<T>::size; }

    auto s = size<MyVariant>();

This will be needed for an upcoming IPC change, which will result in us
knowing the Variant type, but not the underlying variadic types that the
Variant holds.
2022-12-26 09:36:16 +01:00

529 lines
18 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/BitCast.h>
#include <AK/StdLibExtras.h>
#include <AK/TypeList.h>
namespace AK::Detail {
template<typename T, typename IndexType, IndexType InitialIndex, typename... InTypes>
struct VariantIndexOf {
static_assert(DependentFalse<T, IndexType, InTypes...>, "Invalid VariantIndex instantiated");
};
template<typename T, typename IndexType, IndexType InitialIndex, typename InType, typename... RestOfInTypes>
struct VariantIndexOf<T, IndexType, InitialIndex, InType, RestOfInTypes...> {
consteval IndexType operator()()
{
if constexpr (IsSame<T, InType>)
return InitialIndex;
else
return VariantIndexOf<T, IndexType, InitialIndex + 1, RestOfInTypes...> {}();
}
};
template<typename T, typename IndexType, IndexType InitialIndex>
struct VariantIndexOf<T, IndexType, InitialIndex> {
consteval IndexType operator()() { return InitialIndex; }
};
template<typename T, typename IndexType, typename... Ts>
consteval IndexType index_of()
{
return VariantIndexOf<T, IndexType, 0, Ts...> {}();
}
template<typename IndexType, IndexType InitialIndex, typename... Ts>
struct Variant;
template<typename IndexType, IndexType InitialIndex, typename F, typename... Ts>
struct Variant<IndexType, InitialIndex, F, Ts...> {
static constexpr auto current_index = VariantIndexOf<F, IndexType, InitialIndex, F, Ts...> {}();
ALWAYS_INLINE static void delete_(IndexType id, void* data)
{
if (id == current_index)
bit_cast<F*>(data)->~F();
else
Variant<IndexType, InitialIndex + 1, Ts...>::delete_(id, data);
}
ALWAYS_INLINE static void move_(IndexType old_id, void* old_data, void* new_data)
{
if (old_id == current_index)
new (new_data) F(move(*bit_cast<F*>(old_data)));
else
Variant<IndexType, InitialIndex + 1, Ts...>::move_(old_id, old_data, new_data);
}
ALWAYS_INLINE static void copy_(IndexType old_id, void const* old_data, void* new_data)
{
if (old_id == current_index)
new (new_data) F(*bit_cast<F const*>(old_data));
else
Variant<IndexType, InitialIndex + 1, Ts...>::copy_(old_id, old_data, new_data);
}
};
template<typename IndexType, IndexType InitialIndex>
struct Variant<IndexType, InitialIndex> {
ALWAYS_INLINE static void delete_(IndexType, void*) { }
ALWAYS_INLINE static void move_(IndexType, void*, void*) { }
ALWAYS_INLINE static void copy_(IndexType, void const*, void*) { }
};
template<typename IndexType, typename... Ts>
struct VisitImpl {
template<typename RT, typename T, size_t I, typename Fn>
static constexpr bool has_explicitly_named_overload()
{
// If we're not allowed to make a member function pointer and call it directly (without explicitly resolving it),
// we have a templated function on our hands (or a function overload set).
// in such cases, we don't have an explicitly named overload, and we would have to select it.
return requires { (declval<Fn>().*(&Fn::operator()))(declval<T>()); };
}
template<typename ReturnType, typename T, typename Visitor, auto... Is>
static constexpr bool should_invoke_const_overload(IndexSequence<Is...>)
{
// Scan over all the different visitor functions, if none of them are suitable for calling with `T const&`, avoid calling that first.
return ((has_explicitly_named_overload<ReturnType, T, Is, typename Visitor::Types::template Type<Is>>()) || ...);
}
template<typename Self, typename Visitor, IndexType CurrentIndex = 0>
ALWAYS_INLINE static constexpr decltype(auto) visit(Self& self, IndexType id, void const* data, Visitor&& visitor)
requires(CurrentIndex < sizeof...(Ts))
{
using T = typename TypeList<Ts...>::template Type<CurrentIndex>;
if (id == CurrentIndex) {
// Check if Visitor::operator() is an explicitly typed function (as opposed to a templated function)
// if so, try to call that with `T const&` first before copying the Variant's const-ness.
// This emulates normal C++ call semantics where templated functions are considered last, after all non-templated overloads
// are checked and found to be unusable.
using ReturnType = decltype(visitor(*bit_cast<T*>(data)));
if constexpr (should_invoke_const_overload<ReturnType, T, Visitor>(MakeIndexSequence<Visitor::Types::size>()))
return visitor(*bit_cast<AddConst<T>*>(data));
return visitor(*bit_cast<CopyConst<Self, T>*>(data));
}
if constexpr ((CurrentIndex + 1) < sizeof...(Ts))
return visit<Self, Visitor, CurrentIndex + 1>(self, id, data, forward<Visitor>(visitor));
else
VERIFY_NOT_REACHED();
}
};
struct VariantNoClearTag {
explicit VariantNoClearTag() = default;
};
struct VariantConstructTag {
explicit VariantConstructTag() = default;
};
template<typename T, typename Base>
struct VariantConstructors {
ALWAYS_INLINE VariantConstructors(T&& t)
requires(requires { T(move(t)); })
{
internal_cast().clear_without_destruction();
internal_cast().set(move(t), VariantNoClearTag {});
}
ALWAYS_INLINE VariantConstructors(T const& t)
requires(requires { T(t); })
{
internal_cast().clear_without_destruction();
internal_cast().set(t, VariantNoClearTag {});
}
ALWAYS_INLINE VariantConstructors() = default;
private:
[[nodiscard]] ALWAYS_INLINE Base& internal_cast()
{
// Warning: Internal type shenanigans - VariantsConstrutors<T, Base> <- Base
// Not the other way around, so be _really_ careful not to cause issues.
return *static_cast<Base*>(this);
}
};
// Type list deduplication
// Since this is a big template mess, each template is commented with how and why it works.
struct ParameterPackTag {
};
// Pack<Ts...> is just a way to pass around the type parameter pack Ts
template<typename... Ts>
struct ParameterPack : ParameterPackTag {
};
// Blank<T> is a unique replacement for T, if T is a duplicate type.
template<typename T>
struct Blank {
};
template<typename A, typename P>
inline constexpr bool IsTypeInPack = false;
// IsTypeInPack<T, Pack<Ts...>> will just return whether 'T' exists in 'Ts'.
template<typename T, typename... Ts>
inline constexpr bool IsTypeInPack<T, ParameterPack<Ts...>> = (IsSame<T, Ts> || ...);
// Replaces T with Blank<T> if it exists in Qs.
template<typename T, typename... Qs>
using BlankIfDuplicate = Conditional<(IsTypeInPack<T, Qs> || ...), Blank<T>, T>;
template<unsigned I, typename...>
struct InheritFromUniqueEntries;
// InheritFromUniqueEntries will inherit from both Qs and Ts, but only scan entries going *forwards*
// that is to say, if it's scanning from index I in Qs, it won't scan for duplicates for entries before I
// as that has already been checked before.
// This makes sure that the search is linear in time (like the 'merge' step of merge sort).
template<unsigned I, typename... Ts, unsigned... Js, typename... Qs>
struct InheritFromUniqueEntries<I, ParameterPack<Ts...>, IndexSequence<Js...>, Qs...>
: public BlankIfDuplicate<Ts, Conditional<Js <= I, ParameterPack<>, Qs>...>... {
using BlankIfDuplicate<Ts, Conditional<Js <= I, ParameterPack<>, Qs>...>::BlankIfDuplicate...;
};
template<typename...>
struct InheritFromPacks;
// InheritFromPacks will attempt to 'merge' the pack 'Ps' with *itself*, but skip the duplicate entries
// (via InheritFromUniqueEntries).
template<unsigned... Is, typename... Ps>
struct InheritFromPacks<IndexSequence<Is...>, Ps...>
: public InheritFromUniqueEntries<Is, Ps, IndexSequence<Is...>, Ps...>... {
using InheritFromUniqueEntries<Is, Ps, IndexSequence<Is...>, Ps...>::InheritFromUniqueEntries...;
};
// Just a nice wrapper around InheritFromPacks, which will wrap any parameter packs in ParameterPack (unless it already is one).
template<typename... Ps>
using MergeAndDeduplicatePacks = InheritFromPacks<MakeIndexSequence<sizeof...(Ps)>, Conditional<IsBaseOf<ParameterPackTag, Ps>, Ps, ParameterPack<Ps>>...>;
}
namespace AK {
struct Empty {
};
template<typename T>
concept NotLvalueReference = !
IsLvalueReference<T>;
template<NotLvalueReference... Ts>
struct Variant
: public Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...> {
public:
using IndexType = Conditional<(sizeof...(Ts) < 255), u8, size_t>; // Note: size+1 reserved for internal value checks
private:
static constexpr IndexType invalid_index = sizeof...(Ts);
template<typename T>
static constexpr IndexType index_of() { return Detail::index_of<T, IndexType, Ts...>(); }
public:
template<typename T>
static constexpr bool can_contain()
{
return index_of<T>() != invalid_index;
}
template<typename... NewTs>
Variant(Variant<NewTs...>&& old)
requires((can_contain<NewTs>() && ...))
: Variant(move(old).template downcast<Ts...>())
{
}
template<typename... NewTs>
Variant(Variant<NewTs...> const& old)
requires((can_contain<NewTs>() && ...))
: Variant(old.template downcast<Ts...>())
{
}
template<NotLvalueReference... NewTs>
friend struct Variant;
Variant()
requires(!can_contain<Empty>())
= delete;
Variant()
requires(can_contain<Empty>())
: Variant(Empty())
{
}
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
Variant(Variant const&)
requires(!(IsCopyConstructible<Ts> && ...))
= delete;
Variant(Variant const&) = default;
Variant(Variant&&)
requires(!(IsMoveConstructible<Ts> && ...))
= delete;
Variant(Variant&&) = default;
~Variant()
requires(!(IsDestructible<Ts> && ...))
= delete;
~Variant() = default;
Variant& operator=(Variant const&)
requires(!(IsCopyConstructible<Ts> && ...) || !(IsDestructible<Ts> && ...))
= delete;
Variant& operator=(Variant const&) = default;
Variant& operator=(Variant&&)
requires(!(IsMoveConstructible<Ts> && ...) || !(IsDestructible<Ts> && ...))
= delete;
Variant& operator=(Variant&&) = default;
#endif
ALWAYS_INLINE Variant(Variant const& old)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyCopyConstructible<Ts> && ...))
#endif
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_data {}
, m_index(old.m_index)
{
Helper::copy_(old.m_index, old.m_data, m_data);
}
// Note: A moved-from variant emulates the state of the object it contains
// so if a variant containing an int is moved from, it will still contain that int
// and if a variant with a nontrivial move ctor is moved from, it may or may not be valid
// but it will still contain the "moved-from" state of the object it previously contained.
ALWAYS_INLINE Variant(Variant&& old)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyMoveConstructible<Ts> && ...))
#endif
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_index(old.m_index)
{
Helper::move_(old.m_index, old.m_data, m_data);
}
ALWAYS_INLINE ~Variant()
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyDestructible<Ts> && ...))
#endif
{
Helper::delete_(m_index, m_data);
}
ALWAYS_INLINE Variant& operator=(Variant const& other)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyCopyConstructible<Ts> && ...) || !(IsTriviallyDestructible<Ts> && ...))
#endif
{
if (this != &other) {
if constexpr (!(IsTriviallyDestructible<Ts> && ...)) {
Helper::delete_(m_index, m_data);
}
m_index = other.m_index;
Helper::copy_(other.m_index, other.m_data, m_data);
}
return *this;
}
ALWAYS_INLINE Variant& operator=(Variant&& other)
#ifdef AK_HAS_CONDITIONALLY_TRIVIAL
requires(!(IsTriviallyMoveConstructible<Ts> && ...) || !(IsTriviallyDestructible<Ts> && ...))
#endif
{
if (this != &other) {
if constexpr (!(IsTriviallyDestructible<Ts> && ...)) {
Helper::delete_(m_index, m_data);
}
m_index = other.m_index;
Helper::move_(other.m_index, other.m_data, m_data);
}
return *this;
}
using Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>::MergeAndDeduplicatePacks;
template<typename T, typename StrippedT = RemoveCVReference<T>>
void set(T&& t)
requires(can_contain<StrippedT>() && requires { StrippedT(forward<T>(t)); })
{
constexpr auto new_index = index_of<StrippedT>();
Helper::delete_(m_index, m_data);
new (m_data) StrippedT(forward<T>(t));
m_index = new_index;
}
template<typename T, typename StrippedT = RemoveCVReference<T>>
void set(T&& t, Detail::VariantNoClearTag)
requires(can_contain<StrippedT>() && requires { StrippedT(forward<T>(t)); })
{
constexpr auto new_index = index_of<StrippedT>();
new (m_data) StrippedT(forward<T>(t));
m_index = new_index;
}
template<typename T>
T* get_pointer()
requires(can_contain<T>())
{
if (index_of<T>() == m_index)
return bit_cast<T*>(&m_data);
return nullptr;
}
template<typename T>
T& get()
requires(can_contain<T>())
{
VERIFY(has<T>());
return *bit_cast<T*>(&m_data);
}
template<typename T>
T const* get_pointer() const
requires(can_contain<T>())
{
if (index_of<T>() == m_index)
return bit_cast<T const*>(&m_data);
return nullptr;
}
template<typename T>
T const& get() const
requires(can_contain<T>())
{
VERIFY(has<T>());
return *bit_cast<T const*>(&m_data);
}
template<typename T>
[[nodiscard]] bool has() const
requires(can_contain<T>())
{
return index_of<T>() == m_index;
}
template<typename... Fs>
ALWAYS_INLINE decltype(auto) visit(Fs&&... functions)
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
return VisitHelper::visit(*this, m_index, m_data, move(visitor));
}
template<typename... Fs>
ALWAYS_INLINE decltype(auto) visit(Fs&&... functions) const
{
Visitor<Fs...> visitor { forward<Fs>(functions)... };
return VisitHelper::visit(*this, m_index, m_data, move(visitor));
}
template<typename... NewTs>
decltype(auto) downcast() &&
{
if constexpr (sizeof...(NewTs) == 1 && (IsSpecializationOf<NewTs, Variant> && ...)) {
return move(*this).template downcast_variant<NewTs...>();
} else {
Variant<NewTs...> instance { Variant<NewTs...>::invalid_index, Detail::VariantConstructTag {} };
visit([&](auto& value) {
if constexpr (Variant<NewTs...>::template can_contain<RemoveCVReference<decltype(value)>>())
instance.set(move(value), Detail::VariantNoClearTag {});
});
VERIFY(instance.m_index != instance.invalid_index);
return instance;
}
}
template<typename... NewTs>
decltype(auto) downcast() const&
{
if constexpr (sizeof...(NewTs) == 1 && (IsSpecializationOf<NewTs, Variant> && ...)) {
return (*this).template downcast_variant(TypeWrapper<NewTs...> {});
} else {
Variant<NewTs...> instance { Variant<NewTs...>::invalid_index, Detail::VariantConstructTag {} };
visit([&](auto const& value) {
if constexpr (Variant<NewTs...>::template can_contain<RemoveCVReference<decltype(value)>>())
instance.set(value, Detail::VariantNoClearTag {});
});
VERIFY(instance.m_index != instance.invalid_index);
return instance;
}
}
auto index() const { return m_index; }
private:
template<typename... NewTs>
Variant<NewTs...> downcast_variant(TypeWrapper<Variant<NewTs...>>) &&
{
return move(*this).template downcast<NewTs...>();
}
template<typename... NewTs>
Variant<NewTs...> downcast_variant(TypeWrapper<Variant<NewTs...>>) const&
{
return (*this).template downcast<NewTs...>();
}
static constexpr auto data_size = Detail::integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, sizeof(Ts)...>()).max();
static constexpr auto data_alignment = Detail::integer_sequence_generate_array<size_t>(0, IntegerSequence<size_t, alignof(Ts)...>()).max();
using Helper = Detail::Variant<IndexType, 0, Ts...>;
using VisitHelper = Detail::VisitImpl<IndexType, Ts...>;
template<typename T_, typename U_>
friend struct Detail::VariantConstructors;
explicit Variant(IndexType index, Detail::VariantConstructTag)
: Detail::MergeAndDeduplicatePacks<Detail::VariantConstructors<Ts, Variant<Ts...>>...>()
, m_index(index)
{
}
ALWAYS_INLINE void clear_without_destruction()
{
__builtin_memset(m_data, 0, data_size);
m_index = invalid_index;
}
template<typename... Fs>
struct Visitor : Fs... {
using Types = TypeList<Fs...>;
Visitor(Fs&&... args)
: Fs(forward<Fs>(args))...
{
}
using Fs::operator()...;
};
// Note: Make sure not to default-initialize!
// VariantConstructors::VariantConstructors(T) will set this to the correct value
// So default-constructing to anything will leave the first initialization with that value instead of the correct one.
alignas(data_alignment) u8 m_data[data_size];
IndexType m_index;
};
template<typename... Ts>
struct TypeList<Variant<Ts...>> : TypeList<Ts...> { };
}
#if USING_AK_GLOBALLY
using AK::Empty;
using AK::Variant;
#endif