ladybird/Userland/Libraries/LibC/malloc.cpp
Andreas Kling 2d1a651e0a Kernel: Make purgeable memory a VMObject level concept (again)
This patch changes the semantics of purgeable memory.

- AnonymousVMObject now has a "purgeable" flag. It can only be set when
  constructing the object. (Previously, all anonymous memory was
  effectively purgeable.)

- AnonymousVMObject now has a "volatile" flag. It covers the entire
  range of physical pages. (Previously, we tracked ranges of volatile
  pages, effectively making it a page-level concept.)

- Non-volatile objects maintain a physical page reservation via the
  committed pages mechanism, to ensure full coverage for page faults.

- When an object is made volatile, it relinquishes any unused committed
  pages immediately. If later made non-volatile again, we then attempt
  to make a new committed pages reservation. If this fails, we return
  ENOMEM to userspace.

mmap() now creates purgeable objects if passed the MAP_PURGEABLE option
together with MAP_ANONYMOUS. anon_create() memory is always purgeable.
2021-07-25 17:28:05 +02:00

520 lines
17 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/ScopedValueRollback.h>
#include <AK/Vector.h>
#include <LibELF/AuxiliaryVector.h>
#include <assert.h>
#include <errno.h>
#include <mallocdefs.h>
#include <pthread.h>
#include <serenity.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/internals.h>
#include <sys/mman.h>
#include <syscall.h>
class PthreadMutexLocker {
public:
ALWAYS_INLINE explicit PthreadMutexLocker(pthread_mutex_t& mutex)
: m_mutex(mutex)
{
lock();
}
ALWAYS_INLINE ~PthreadMutexLocker() { unlock(); }
ALWAYS_INLINE void lock() { pthread_mutex_lock(&m_mutex); }
ALWAYS_INLINE void unlock() { pthread_mutex_unlock(&m_mutex); }
private:
pthread_mutex_t& m_mutex;
};
#define RECYCLE_BIG_ALLOCATIONS
static pthread_mutex_t s_malloc_mutex = PTHREAD_MUTEX_INITIALIZER;
constexpr size_t number_of_hot_chunked_blocks_to_keep_around = 16;
constexpr size_t number_of_cold_chunked_blocks_to_keep_around = 16;
constexpr size_t number_of_big_blocks_to_keep_around_per_size_class = 8;
static bool s_log_malloc = false;
static bool s_scrub_malloc = true;
static bool s_scrub_free = true;
static bool s_profiling = false;
static bool s_in_userspace_emulator = false;
ALWAYS_INLINE static void ue_notify_malloc(const void* ptr, size_t size)
{
if (s_in_userspace_emulator)
syscall(SC_emuctl, 1, size, (FlatPtr)ptr);
}
ALWAYS_INLINE static void ue_notify_free(const void* ptr)
{
if (s_in_userspace_emulator)
syscall(SC_emuctl, 2, (FlatPtr)ptr, 0);
}
ALWAYS_INLINE static void ue_notify_realloc(const void* ptr, size_t size)
{
if (s_in_userspace_emulator)
syscall(SC_emuctl, 3, size, (FlatPtr)ptr);
}
ALWAYS_INLINE static void ue_notify_chunk_size_changed(const void* block, size_t chunk_size)
{
if (s_in_userspace_emulator)
syscall(SC_emuctl, 4, chunk_size, (FlatPtr)block);
}
struct MallocStats {
size_t number_of_malloc_calls;
size_t number_of_big_allocator_hits;
size_t number_of_big_allocator_purge_hits;
size_t number_of_big_allocs;
size_t number_of_hot_empty_block_hits;
size_t number_of_cold_empty_block_hits;
size_t number_of_cold_empty_block_purge_hits;
size_t number_of_block_allocs;
size_t number_of_blocks_full;
size_t number_of_free_calls;
size_t number_of_big_allocator_keeps;
size_t number_of_big_allocator_frees;
size_t number_of_freed_full_blocks;
size_t number_of_hot_keeps;
size_t number_of_cold_keeps;
size_t number_of_frees;
};
static MallocStats g_malloc_stats = {};
static size_t s_hot_empty_block_count { 0 };
static ChunkedBlock* s_hot_empty_blocks[number_of_hot_chunked_blocks_to_keep_around] { nullptr };
static size_t s_cold_empty_block_count { 0 };
static ChunkedBlock* s_cold_empty_blocks[number_of_cold_chunked_blocks_to_keep_around] { nullptr };
struct Allocator {
size_t size { 0 };
size_t block_count { 0 };
ChunkedBlock::List usable_blocks;
ChunkedBlock::List full_blocks;
};
struct BigAllocator {
Vector<BigAllocationBlock*, number_of_big_blocks_to_keep_around_per_size_class> blocks;
};
// Allocators will be initialized in __malloc_init.
// We can not rely on global constructors to initialize them,
// because they must be initialized before other global constructors
// are run. Similarly, we can not allow global destructors to destruct
// them. We could have used AK::NeverDestoyed to prevent the latter,
// but it would have not helped with the former.
alignas(Allocator) static u8 g_allocators_storage[sizeof(Allocator) * num_size_classes];
alignas(BigAllocator) static u8 g_big_allocators_storage[sizeof(BigAllocator)];
static inline Allocator (&allocators())[num_size_classes]
{
return reinterpret_cast<Allocator(&)[num_size_classes]>(g_allocators_storage);
}
static inline BigAllocator (&big_allocators())[1]
{
return reinterpret_cast<BigAllocator(&)[1]>(g_big_allocators_storage);
}
static Allocator* allocator_for_size(size_t size, size_t& good_size)
{
for (size_t i = 0; size_classes[i]; ++i) {
if (size <= size_classes[i]) {
good_size = size_classes[i];
return &allocators()[i];
}
}
good_size = PAGE_ROUND_UP(size);
return nullptr;
}
#ifdef RECYCLE_BIG_ALLOCATIONS
static BigAllocator* big_allocator_for_size(size_t size)
{
if (size == 65536)
return &big_allocators()[0];
return nullptr;
}
#endif
extern "C" {
static void* os_alloc(size_t size, const char* name)
{
auto* ptr = serenity_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_PURGEABLE, 0, 0, ChunkedBlock::block_size, name);
VERIFY(ptr != MAP_FAILED);
return ptr;
}
static void os_free(void* ptr, size_t size)
{
int rc = munmap(ptr, size);
assert(rc == 0);
}
enum class CallerWillInitializeMemory {
No,
Yes,
};
static void* malloc_impl(size_t size, CallerWillInitializeMemory caller_will_initialize_memory)
{
if (s_log_malloc)
dbgln("LibC: malloc({})", size);
if (!size) {
// Legally we could just return a null pointer here, but this is more
// compatible with existing software.
size = 1;
}
g_malloc_stats.number_of_malloc_calls++;
size_t good_size;
auto* allocator = allocator_for_size(size, good_size);
PthreadMutexLocker locker(s_malloc_mutex);
if (!allocator) {
size_t real_size = round_up_to_power_of_two(sizeof(BigAllocationBlock) + size, ChunkedBlock::block_size);
#ifdef RECYCLE_BIG_ALLOCATIONS
if (auto* allocator = big_allocator_for_size(real_size)) {
if (!allocator->blocks.is_empty()) {
g_malloc_stats.number_of_big_allocator_hits++;
auto* block = allocator->blocks.take_last();
int rc = madvise(block, real_size, MADV_SET_NONVOLATILE);
bool this_block_was_purged = rc == 1;
if (rc < 0) {
perror("madvise");
VERIFY_NOT_REACHED();
}
if (mprotect(block, real_size, PROT_READ | PROT_WRITE) < 0) {
perror("mprotect");
VERIFY_NOT_REACHED();
}
if (this_block_was_purged) {
g_malloc_stats.number_of_big_allocator_purge_hits++;
new (block) BigAllocationBlock(real_size);
}
ue_notify_malloc(&block->m_slot[0], size);
return &block->m_slot[0];
}
}
#endif
g_malloc_stats.number_of_big_allocs++;
auto* block = (BigAllocationBlock*)os_alloc(real_size, "malloc: BigAllocationBlock");
new (block) BigAllocationBlock(real_size);
ue_notify_malloc(&block->m_slot[0], size);
return &block->m_slot[0];
}
ChunkedBlock* block = nullptr;
for (auto& current : allocator->usable_blocks) {
if (current.free_chunks()) {
block = &current;
break;
}
}
if (!block && s_hot_empty_block_count) {
g_malloc_stats.number_of_hot_empty_block_hits++;
block = s_hot_empty_blocks[--s_hot_empty_block_count];
if (block->m_size != good_size) {
new (block) ChunkedBlock(good_size);
ue_notify_chunk_size_changed(block, good_size);
char buffer[64];
snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%zu)", good_size);
set_mmap_name(block, ChunkedBlock::block_size, buffer);
}
allocator->usable_blocks.append(*block);
}
if (!block && s_cold_empty_block_count) {
g_malloc_stats.number_of_cold_empty_block_hits++;
block = s_cold_empty_blocks[--s_cold_empty_block_count];
int rc = madvise(block, ChunkedBlock::block_size, MADV_SET_NONVOLATILE);
bool this_block_was_purged = rc == 1;
if (rc < 0) {
perror("madvise");
VERIFY_NOT_REACHED();
}
rc = mprotect(block, ChunkedBlock::block_size, PROT_READ | PROT_WRITE);
if (rc < 0) {
perror("mprotect");
VERIFY_NOT_REACHED();
}
if (this_block_was_purged || block->m_size != good_size) {
if (this_block_was_purged)
g_malloc_stats.number_of_cold_empty_block_purge_hits++;
new (block) ChunkedBlock(good_size);
ue_notify_chunk_size_changed(block, good_size);
}
allocator->usable_blocks.append(*block);
}
if (!block) {
g_malloc_stats.number_of_block_allocs++;
char buffer[64];
snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%zu)", good_size);
block = (ChunkedBlock*)os_alloc(ChunkedBlock::block_size, buffer);
new (block) ChunkedBlock(good_size);
allocator->usable_blocks.append(*block);
++allocator->block_count;
}
--block->m_free_chunks;
void* ptr = block->m_freelist;
if (ptr) {
block->m_freelist = block->m_freelist->next;
} else {
ptr = block->m_slot + block->m_next_lazy_freelist_index * block->m_size;
block->m_next_lazy_freelist_index++;
}
VERIFY(ptr);
if (block->is_full()) {
g_malloc_stats.number_of_blocks_full++;
dbgln_if(MALLOC_DEBUG, "Block {:p} is now full in size class {}", block, good_size);
allocator->usable_blocks.remove(*block);
allocator->full_blocks.append(*block);
}
dbgln_if(MALLOC_DEBUG, "LibC: allocated {:p} (chunk in block {:p}, size {})", ptr, block, block->bytes_per_chunk());
if (s_scrub_malloc && caller_will_initialize_memory == CallerWillInitializeMemory::No)
memset(ptr, MALLOC_SCRUB_BYTE, block->m_size);
ue_notify_malloc(ptr, size);
return ptr;
}
static void free_impl(void* ptr)
{
ScopedValueRollback rollback(errno);
if (!ptr)
return;
g_malloc_stats.number_of_free_calls++;
void* block_base = (void*)((FlatPtr)ptr & ChunkedBlock::ChunkedBlock::block_mask);
size_t magic = *(size_t*)block_base;
PthreadMutexLocker locker(s_malloc_mutex);
if (magic == MAGIC_BIGALLOC_HEADER) {
auto* block = (BigAllocationBlock*)block_base;
#ifdef RECYCLE_BIG_ALLOCATIONS
if (auto* allocator = big_allocator_for_size(block->m_size)) {
if (allocator->blocks.size() < number_of_big_blocks_to_keep_around_per_size_class) {
g_malloc_stats.number_of_big_allocator_keeps++;
allocator->blocks.append(block);
size_t this_block_size = block->m_size;
if (mprotect(block, this_block_size, PROT_NONE) < 0) {
perror("mprotect");
VERIFY_NOT_REACHED();
}
if (madvise(block, this_block_size, MADV_SET_VOLATILE) != 0) {
perror("madvise");
VERIFY_NOT_REACHED();
}
return;
}
}
#endif
g_malloc_stats.number_of_big_allocator_frees++;
os_free(block, block->m_size);
return;
}
assert(magic == MAGIC_PAGE_HEADER);
auto* block = (ChunkedBlock*)block_base;
dbgln_if(MALLOC_DEBUG, "LibC: freeing {:p} in allocator {:p} (size={}, used={})", ptr, block, block->bytes_per_chunk(), block->used_chunks());
if (s_scrub_free)
memset(ptr, FREE_SCRUB_BYTE, block->bytes_per_chunk());
auto* entry = (FreelistEntry*)ptr;
entry->next = block->m_freelist;
block->m_freelist = entry;
if (block->is_full()) {
size_t good_size;
auto* allocator = allocator_for_size(block->m_size, good_size);
dbgln_if(MALLOC_DEBUG, "Block {:p} no longer full in size class {}", block, good_size);
g_malloc_stats.number_of_freed_full_blocks++;
allocator->full_blocks.remove(*block);
allocator->usable_blocks.prepend(*block);
}
++block->m_free_chunks;
if (!block->used_chunks()) {
size_t good_size;
auto* allocator = allocator_for_size(block->m_size, good_size);
if (s_hot_empty_block_count < number_of_hot_chunked_blocks_to_keep_around) {
dbgln_if(MALLOC_DEBUG, "Keeping hot block {:p} around", block);
g_malloc_stats.number_of_hot_keeps++;
allocator->usable_blocks.remove(*block);
s_hot_empty_blocks[s_hot_empty_block_count++] = block;
return;
}
if (s_cold_empty_block_count < number_of_cold_chunked_blocks_to_keep_around) {
dbgln_if(MALLOC_DEBUG, "Keeping cold block {:p} around", block);
g_malloc_stats.number_of_cold_keeps++;
allocator->usable_blocks.remove(*block);
s_cold_empty_blocks[s_cold_empty_block_count++] = block;
mprotect(block, ChunkedBlock::block_size, PROT_NONE);
madvise(block, ChunkedBlock::block_size, MADV_SET_VOLATILE);
return;
}
dbgln_if(MALLOC_DEBUG, "Releasing block {:p} for size class {}", block, good_size);
g_malloc_stats.number_of_frees++;
allocator->usable_blocks.remove(*block);
--allocator->block_count;
os_free(block, ChunkedBlock::block_size);
}
}
[[gnu::flatten]] void* malloc(size_t size)
{
void* ptr = malloc_impl(size, CallerWillInitializeMemory::No);
if (s_profiling)
perf_event(PERF_EVENT_MALLOC, size, reinterpret_cast<FlatPtr>(ptr));
return ptr;
}
[[gnu::flatten]] void free(void* ptr)
{
if (s_profiling)
perf_event(PERF_EVENT_FREE, reinterpret_cast<FlatPtr>(ptr), 0);
ue_notify_free(ptr);
free_impl(ptr);
}
void* calloc(size_t count, size_t size)
{
if (Checked<size_t>::multiplication_would_overflow(count, size)) {
errno = ENOMEM;
return nullptr;
}
size_t new_size = count * size;
auto* ptr = malloc_impl(new_size, CallerWillInitializeMemory::Yes);
if (ptr)
memset(ptr, 0, new_size);
return ptr;
}
size_t malloc_size(void* ptr)
{
if (!ptr)
return 0;
void* page_base = (void*)((FlatPtr)ptr & ChunkedBlock::block_mask);
auto* header = (const CommonHeader*)page_base;
auto size = header->m_size;
if (header->m_magic == MAGIC_BIGALLOC_HEADER)
size -= sizeof(CommonHeader);
else
VERIFY(header->m_magic == MAGIC_PAGE_HEADER);
return size;
}
size_t malloc_good_size(size_t size)
{
size_t good_size;
allocator_for_size(size, good_size);
return good_size;
}
void* realloc(void* ptr, size_t size)
{
if (!ptr)
return malloc(size);
if (!size) {
free(ptr);
return nullptr;
}
auto existing_allocation_size = malloc_size(ptr);
if (size <= existing_allocation_size) {
ue_notify_realloc(ptr, size);
return ptr;
}
auto* new_ptr = malloc(size);
if (new_ptr) {
memcpy(new_ptr, ptr, min(existing_allocation_size, size));
free(ptr);
}
return new_ptr;
}
void __malloc_init()
{
s_in_userspace_emulator = (int)syscall(SC_emuctl, 0) != -ENOSYS;
if (s_in_userspace_emulator) {
// Don't bother scrubbing memory if we're running in UE since it
// keeps track of heap memory anyway.
s_scrub_malloc = false;
s_scrub_free = false;
}
if (secure_getenv("LIBC_NOSCRUB_MALLOC"))
s_scrub_malloc = false;
if (secure_getenv("LIBC_NOSCRUB_FREE"))
s_scrub_free = false;
if (secure_getenv("LIBC_LOG_MALLOC"))
s_log_malloc = true;
if (secure_getenv("LIBC_PROFILE_MALLOC"))
s_profiling = true;
for (size_t i = 0; i < num_size_classes; ++i) {
new (&allocators()[i]) Allocator();
allocators()[i].size = size_classes[i];
}
new (&big_allocators()[0])(BigAllocator);
}
void serenity_dump_malloc_stats()
{
dbgln("# malloc() calls: {}", g_malloc_stats.number_of_malloc_calls);
dbgln();
dbgln("big alloc hits: {}", g_malloc_stats.number_of_big_allocator_hits);
dbgln("big alloc hits that were purged: {}", g_malloc_stats.number_of_big_allocator_purge_hits);
dbgln("big allocs: {}", g_malloc_stats.number_of_big_allocs);
dbgln();
dbgln("empty hot block hits: {}", g_malloc_stats.number_of_hot_empty_block_hits);
dbgln("empty cold block hits: {}", g_malloc_stats.number_of_cold_empty_block_hits);
dbgln("empty cold block hits that were purged: {}", g_malloc_stats.number_of_cold_empty_block_purge_hits);
dbgln("block allocs: {}", g_malloc_stats.number_of_block_allocs);
dbgln("filled blocks: {}", g_malloc_stats.number_of_blocks_full);
dbgln();
dbgln("# free() calls: {}", g_malloc_stats.number_of_free_calls);
dbgln();
dbgln("big alloc keeps: {}", g_malloc_stats.number_of_big_allocator_keeps);
dbgln("big alloc frees: {}", g_malloc_stats.number_of_big_allocator_frees);
dbgln();
dbgln("full block frees: {}", g_malloc_stats.number_of_freed_full_blocks);
dbgln("number of hot keeps: {}", g_malloc_stats.number_of_hot_keeps);
dbgln("number of cold keeps: {}", g_malloc_stats.number_of_cold_keeps);
dbgln("number of frees: {}", g_malloc_stats.number_of_frees);
}
}