ladybird/Userland/Services/ChessEngine/MCTSTree.cpp
Brian Gianforcaro 1682f0b760 Everything: Move to SPDX license identifiers in all files.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.

See: https://spdx.dev/resources/use/#identifiers

This was done with the `ambr` search and replace tool.

 ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
2021-04-22 11:22:27 +02:00

160 lines
3.8 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "MCTSTree.h"
#include <AK/String.h>
#include <stdlib.h>
MCTSTree::MCTSTree(const Chess::Board& board, double exploration_parameter, MCTSTree* parent)
: m_parent(parent)
, m_exploration_parameter(exploration_parameter)
, m_board(board)
{
if (m_parent)
m_eval_method = m_parent->eval_method();
}
MCTSTree& MCTSTree::select_leaf()
{
if (!expanded() || m_children.size() == 0)
return *this;
MCTSTree* node = nullptr;
double max_uct = -double(INFINITY);
for (auto& child : m_children) {
double uct = child.uct(m_board.turn());
if (uct >= max_uct) {
max_uct = uct;
node = &child;
}
}
VERIFY(node);
return node->select_leaf();
}
MCTSTree& MCTSTree::expand()
{
VERIFY(!expanded() || m_children.size() == 0);
if (!m_moves_generated) {
m_board.generate_moves([&](Chess::Move move) {
Chess::Board clone = m_board;
clone.apply_move(move);
m_children.append(make<MCTSTree>(clone, m_exploration_parameter, this));
return IterationDecision::Continue;
});
m_moves_generated = true;
}
if (m_children.size() == 0) {
return *this;
}
for (auto& child : m_children) {
if (child.m_simulations == 0) {
return child;
}
}
VERIFY_NOT_REACHED();
}
int MCTSTree::simulate_game() const
{
VERIFY_NOT_REACHED();
Chess::Board clone = m_board;
while (!clone.game_finished()) {
clone.apply_move(clone.random_move());
}
return clone.game_score();
}
int MCTSTree::heuristic() const
{
if (m_board.game_finished())
return m_board.game_score();
double winchance = max(min(double(m_board.material_imbalance()) / 6, 1.0), -1.0);
double random = double(rand()) / RAND_MAX;
if (winchance >= random)
return 1;
if (winchance <= -random)
return -1;
return 0;
}
void MCTSTree::apply_result(int game_score)
{
m_simulations++;
m_white_points += game_score;
if (m_parent)
m_parent->apply_result(game_score);
}
void MCTSTree::do_round()
{
auto& node = select_leaf().expand();
int result;
if (m_eval_method == EvalMethod::Simulation) {
result = node.simulate_game();
} else {
result = node.heuristic();
}
node.apply_result(result);
}
Chess::Move MCTSTree::best_move() const
{
int score_multiplier = (m_board.turn() == Chess::Color::White) ? 1 : -1;
Chess::Move best_move = { { 0, 0 }, { 0, 0 } };
double best_score = -double(INFINITY);
VERIFY(m_children.size());
for (auto& node : m_children) {
double node_score = node.expected_value() * score_multiplier;
if (node_score >= best_score) {
// The best move is the last move made in the child.
best_move = node.m_board.moves()[node.m_board.moves().size() - 1];
best_score = node_score;
}
}
return best_move;
}
double MCTSTree::expected_value() const
{
if (m_simulations == 0)
return 0;
return double(m_white_points) / m_simulations;
}
double MCTSTree::uct(Chess::Color color) const
{
// UCT: Upper Confidence Bound Applied to Trees.
// Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning"
// Fun fact: Szepesvári was my data structures professor.
double expected = expected_value() * ((color == Chess::Color::White) ? 1 : -1);
return expected + m_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations);
}
bool MCTSTree::expanded() const
{
if (!m_moves_generated)
return false;
for (auto& child : m_children) {
if (child.m_simulations == 0)
return false;
}
return true;
}