ladybird/Kernel/Heap/kmalloc.cpp
2021-08-07 11:48:00 +02:00

385 lines
13 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
/*
* Really really *really* Q&D malloc() and free() implementations
* just to get going. Don't ever let anyone see this shit. :^)
*/
#include <AK/Assertions.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/Types.h>
#include <Kernel/Debug.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
#include <Kernel/Locking/SpinLock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#define CHUNK_SIZE 32
#define POOL_SIZE (2 * MiB)
#define ETERNAL_RANGE_SIZE (3 * MiB)
namespace std {
const nothrow_t nothrow;
}
static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace()
static void kmalloc_allocate_backup_memory();
struct KmallocGlobalHeap {
struct ExpandGlobalHeap {
KmallocGlobalHeap& m_global_heap;
ExpandGlobalHeap(KmallocGlobalHeap& global_heap)
: m_global_heap(global_heap)
{
}
bool m_adding { false };
bool add_memory(size_t allocation_request)
{
if (!Memory::MemoryManager::is_initialized()) {
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Cannot expand heap before MM is initialized!");
}
return false;
}
VERIFY(!m_adding);
TemporaryChange change(m_adding, true);
// At this point we have very little memory left. Any attempt to
// kmalloc() could fail, so use our backup memory first, so we
// can't really reliably allocate even a new region of memory.
// This is why we keep a backup region, which we can
auto region = move(m_global_heap.m_backup_memory);
if (!region) {
// Be careful to not log too much here. We don't want to trigger
// any further calls to kmalloc(). We're already out of memory
// and don't have any backup memory, either!
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Cannot expand heap: no backup memory");
}
return false;
}
// At this point we should have at least enough memory from the
// backup region to be able to log properly
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Adding memory to heap at {}, bytes: {}", region->vaddr(), region->size());
}
auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
m_global_heap.m_subheap_memory.append(region.release_nonnull());
// Since we pulled in our backup heap, make sure we allocate another
// backup heap before returning. Otherwise we potentially lose
// the ability to expand the heap next time we get called.
ScopeGuard guard([&]() {
// We may need to defer allocating backup memory because the
// heap expansion may have been triggered while holding some
// other spinlock. If the expansion happens to need the same
// spinlock we would deadlock. So, if we're in any lock, defer
Processor::current().deferred_call_queue(kmalloc_allocate_backup_memory);
});
// Now that we added our backup memory, check if the backup heap
// was big enough to likely satisfy the request
if (subheap.free_bytes() < allocation_request) {
// Looks like we probably need more
size_t memory_size = Memory::page_round_up(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request));
// Add some more to the new heap. We're already using it for other
// allocations not including the original allocation_request
// that triggered heap expansion. If we don't allocate
memory_size += 1 * MiB;
region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
if (region) {
dbgln("kmalloc: Adding even more memory to heap at {}, bytes: {}", region->vaddr(), region->size());
m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
m_global_heap.m_subheap_memory.append(region.release_nonnull());
} else {
dbgln("kmalloc: Could not expand heap to satisfy allocation of {} bytes", allocation_request);
return false;
}
}
return true;
}
bool remove_memory(void* memory)
{
// This is actually relatively unlikely to happen, because it requires that all
// allocated memory in a subheap to be freed. Only then the subheap can be removed...
for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) {
if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) {
auto region = m_global_heap.m_subheap_memory.take(i);
if (!m_global_heap.m_backup_memory) {
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Using removed memory as backup: {}, bytes: {}", region->vaddr(), region->size());
}
m_global_heap.m_backup_memory = move(region);
} else {
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Queue removing memory from heap at {}, bytes: {}", region->vaddr(), region->size());
}
Processor::deferred_call_queue([this, region = move(region)]() mutable {
// We need to defer freeing the region to prevent a potential
// deadlock since we are still holding the kmalloc lock
// We don't really need to do anything other than holding
// onto the region. Unless we already used the backup
// memory, in which case we want to use the region as the
// new backup.
ScopedSpinLock lock(s_lock);
if (!m_global_heap.m_backup_memory) {
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Queued memory region at {}, bytes: {} will be used as new backup", region->vaddr(), region->size());
}
m_global_heap.m_backup_memory = move(region);
} else {
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Queued memory region at {}, bytes: {} will be freed now", region->vaddr(), region->size());
}
}
});
}
return true;
}
}
if constexpr (KMALLOC_DEBUG) {
dmesgln("kmalloc: Cannot remove memory from heap: {}", VirtualAddress(memory));
}
return false;
}
};
typedef ExpandableHeap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE, ExpandGlobalHeap> HeapType;
HeapType m_heap;
NonnullOwnPtrVector<Memory::Region> m_subheap_memory;
OwnPtr<Memory::Region> m_backup_memory;
KmallocGlobalHeap(u8* memory, size_t memory_size)
: m_heap(memory, memory_size, ExpandGlobalHeap(*this))
{
}
void allocate_backup_memory()
{
if (m_backup_memory)
return;
m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
}
size_t backup_memory_bytes() const
{
return m_backup_memory ? m_backup_memory->size() : 0;
}
};
READONLY_AFTER_INIT static KmallocGlobalHeap* g_kmalloc_global;
alignas(KmallocGlobalHeap) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalHeap)];
// Treat the heap as logically separate from .bss
__attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE];
__attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE];
static size_t g_kmalloc_bytes_eternal = 0;
static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
static size_t g_nested_kfree_calls;
bool g_dump_kmalloc_stacks;
static u8* s_next_eternal_ptr;
READONLY_AFTER_INIT static u8* s_end_of_eternal_range;
static void kmalloc_allocate_backup_memory()
{
g_kmalloc_global->allocate_backup_memory();
}
void kmalloc_enable_expand()
{
g_kmalloc_global->allocate_backup_memory();
}
static inline void kmalloc_verify_nospinlock_held()
{
// Catch bad callers allocating under spinlock.
if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
VERIFY(!Processor::current().in_critical());
}
}
UNMAP_AFTER_INIT void kmalloc_init()
{
// Zero out heap since it's placed after end_of_kernel_bss.
memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap));
memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap));
g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalHeap(kmalloc_pool_heap, sizeof(kmalloc_pool_heap));
s_lock.initialize();
s_next_eternal_ptr = kmalloc_eternal_heap;
s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_eternal_heap);
}
void* kmalloc_eternal(size_t size)
{
kmalloc_verify_nospinlock_held();
size = round_up_to_power_of_two(size, sizeof(void*));
ScopedSpinLock lock(s_lock);
void* ptr = s_next_eternal_ptr;
s_next_eternal_ptr += size;
VERIFY(s_next_eternal_ptr < s_end_of_eternal_range);
g_kmalloc_bytes_eternal += size;
return ptr;
}
void* kmalloc(size_t size)
{
kmalloc_verify_nospinlock_held();
ScopedSpinLock lock(s_lock);
++g_kmalloc_call_count;
if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
dbgln("kmalloc({})", size);
Kernel::dump_backtrace();
}
void* ptr = g_kmalloc_global->m_heap.allocate(size);
if (!ptr) {
PANIC("kmalloc: Out of memory (requested size: {})", size);
}
Thread* current_thread = Thread::current();
if (!current_thread)
current_thread = Processor::idle_thread();
if (current_thread)
PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
return ptr;
}
void kfree_sized(void* ptr, size_t size)
{
(void)size;
return kfree(ptr);
}
void kfree(void* ptr)
{
if (!ptr)
return;
kmalloc_verify_nospinlock_held();
ScopedSpinLock lock(s_lock);
++g_kfree_call_count;
++g_nested_kfree_calls;
if (g_nested_kfree_calls == 1) {
Thread* current_thread = Thread::current();
if (!current_thread)
current_thread = Processor::idle_thread();
if (current_thread)
PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
}
g_kmalloc_global->m_heap.deallocate(ptr);
--g_nested_kfree_calls;
}
size_t kmalloc_good_size(size_t size)
{
return size;
}
[[gnu::malloc, gnu::alloc_size(1), gnu::alloc_align(2)]] static void* kmalloc_aligned_cxx(size_t size, size_t alignment)
{
VERIFY(alignment <= 4096);
void* ptr = kmalloc(size + alignment + sizeof(ptrdiff_t));
size_t max_addr = (size_t)ptr + alignment;
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
return aligned_ptr;
}
void* operator new(size_t size)
{
void* ptr = kmalloc(size);
VERIFY(ptr);
return ptr;
}
void* operator new(size_t size, const std::nothrow_t&) noexcept
{
return kmalloc(size);
}
void* operator new(size_t size, std::align_val_t al)
{
void* ptr = kmalloc_aligned_cxx(size, (size_t)al);
VERIFY(ptr);
return ptr;
}
void* operator new(size_t size, std::align_val_t al, const std::nothrow_t&) noexcept
{
return kmalloc_aligned_cxx(size, (size_t)al);
}
void* operator new[](size_t size)
{
void* ptr = kmalloc(size);
VERIFY(ptr);
return ptr;
}
void* operator new[](size_t size, const std::nothrow_t&) noexcept
{
return kmalloc(size);
}
void operator delete(void*) noexcept
{
// All deletes in kernel code should have a known size.
VERIFY_NOT_REACHED();
}
void operator delete(void* ptr, size_t size) noexcept
{
return kfree_sized(ptr, size);
}
void operator delete(void* ptr, size_t, std::align_val_t) noexcept
{
return kfree_aligned(ptr);
}
void operator delete[](void*) noexcept
{
// All deletes in kernel code should have a known size.
VERIFY_NOT_REACHED();
}
void operator delete[](void* ptr, size_t size) noexcept
{
return kfree_sized(ptr, size);
}
void get_kmalloc_stats(kmalloc_stats& stats)
{
ScopedSpinLock lock(s_lock);
stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes();
stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes();
stats.bytes_eternal = g_kmalloc_bytes_eternal;
stats.kmalloc_call_count = g_kmalloc_call_count;
stats.kfree_call_count = g_kfree_call_count;
}