mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2024-11-22 15:40:19 +00:00
f87041bf3a
Resulting in a massive rename across almost everywhere! Alongside the namespace change, we now have the following names: * JS::NonnullGCPtr -> GC::Ref * JS::GCPtr -> GC::Ptr * JS::HeapFunction -> GC::Function * JS::CellImpl -> GC::Cell * JS::Handle -> GC::Root
538 lines
19 KiB
C++
538 lines
19 KiB
C++
/*
|
|
* Copyright (c) 2020-2022, Andreas Kling <andreas@ladybird.org>
|
|
* Copyright (c) 2023, Aliaksandr Kalenik <kalenik.aliaksandr@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Badge.h>
|
|
#include <AK/Debug.h>
|
|
#include <AK/Function.h>
|
|
#include <AK/HashTable.h>
|
|
#include <AK/JsonArray.h>
|
|
#include <AK/JsonObject.h>
|
|
#include <AK/Platform.h>
|
|
#include <AK/StackInfo.h>
|
|
#include <AK/TemporaryChange.h>
|
|
#include <LibCore/ElapsedTimer.h>
|
|
#include <LibGC/CellAllocator.h>
|
|
#include <LibGC/Heap.h>
|
|
#include <LibGC/HeapBlock.h>
|
|
#include <LibGC/NanBoxedValue.h>
|
|
#include <LibGC/Root.h>
|
|
#include <setjmp.h>
|
|
|
|
#ifdef HAS_ADDRESS_SANITIZER
|
|
# include <sanitizer/asan_interface.h>
|
|
#endif
|
|
|
|
namespace GC {
|
|
|
|
Heap::Heap(void* private_data, AK::Function<void(HashMap<Cell*, GC::HeapRoot>&)> gather_embedder_roots)
|
|
: HeapBase(private_data)
|
|
, m_gather_embedder_roots(move(gather_embedder_roots))
|
|
{
|
|
static_assert(HeapBlock::min_possible_cell_size <= 32, "Heap Cell tracking uses too much data!");
|
|
m_size_based_cell_allocators.append(make<CellAllocator>(64));
|
|
m_size_based_cell_allocators.append(make<CellAllocator>(96));
|
|
m_size_based_cell_allocators.append(make<CellAllocator>(128));
|
|
m_size_based_cell_allocators.append(make<CellAllocator>(256));
|
|
m_size_based_cell_allocators.append(make<CellAllocator>(512));
|
|
m_size_based_cell_allocators.append(make<CellAllocator>(1024));
|
|
m_size_based_cell_allocators.append(make<CellAllocator>(3072));
|
|
}
|
|
|
|
Heap::~Heap()
|
|
{
|
|
collect_garbage(CollectionType::CollectEverything);
|
|
}
|
|
|
|
void Heap::will_allocate(size_t size)
|
|
{
|
|
if (should_collect_on_every_allocation()) {
|
|
m_allocated_bytes_since_last_gc = 0;
|
|
collect_garbage();
|
|
} else if (m_allocated_bytes_since_last_gc + size > m_gc_bytes_threshold) {
|
|
m_allocated_bytes_since_last_gc = 0;
|
|
collect_garbage();
|
|
}
|
|
|
|
m_allocated_bytes_since_last_gc += size;
|
|
}
|
|
|
|
static void add_possible_value(HashMap<FlatPtr, HeapRoot>& possible_pointers, FlatPtr data, HeapRoot origin, FlatPtr min_block_address, FlatPtr max_block_address)
|
|
{
|
|
if constexpr (sizeof(FlatPtr*) == sizeof(NanBoxedValue)) {
|
|
// Because NanBoxedValue stores pointers in non-canonical form we have to check if the top bytes
|
|
// match any pointer-backed tag, in that case we have to extract the pointer to its
|
|
// canonical form and add that as a possible pointer.
|
|
FlatPtr possible_pointer;
|
|
if ((data & SHIFTED_IS_CELL_PATTERN) == SHIFTED_IS_CELL_PATTERN)
|
|
possible_pointer = NanBoxedValue::extract_pointer_bits(data);
|
|
else
|
|
possible_pointer = data;
|
|
if (possible_pointer < min_block_address || possible_pointer > max_block_address)
|
|
return;
|
|
possible_pointers.set(possible_pointer, move(origin));
|
|
} else {
|
|
static_assert((sizeof(NanBoxedValue) % sizeof(FlatPtr*)) == 0);
|
|
if (data < min_block_address || data > max_block_address)
|
|
return;
|
|
// In the 32-bit case we will look at the top and bottom part of NanBoxedValue separately we just
|
|
// add both the upper and lower bytes as possible pointers.
|
|
possible_pointers.set(data, move(origin));
|
|
}
|
|
}
|
|
|
|
void Heap::find_min_and_max_block_addresses(FlatPtr& min_address, FlatPtr& max_address)
|
|
{
|
|
min_address = explode_byte(0xff);
|
|
max_address = 0;
|
|
for (auto& allocator : m_all_cell_allocators) {
|
|
min_address = min(min_address, allocator.min_block_address());
|
|
max_address = max(max_address, allocator.max_block_address() + HeapBlockBase::block_size);
|
|
}
|
|
}
|
|
|
|
template<typename Callback>
|
|
static void for_each_cell_among_possible_pointers(HashTable<HeapBlock*> const& all_live_heap_blocks, HashMap<FlatPtr, HeapRoot>& possible_pointers, Callback callback)
|
|
{
|
|
for (auto possible_pointer : possible_pointers.keys()) {
|
|
if (!possible_pointer)
|
|
continue;
|
|
auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<Cell const*>(possible_pointer));
|
|
if (!all_live_heap_blocks.contains(possible_heap_block))
|
|
continue;
|
|
if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
|
|
callback(cell, possible_pointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
class GraphConstructorVisitor final : public Cell::Visitor {
|
|
public:
|
|
explicit GraphConstructorVisitor(Heap& heap, HashMap<Cell*, HeapRoot> const& roots)
|
|
: m_heap(heap)
|
|
{
|
|
m_heap.find_min_and_max_block_addresses(m_min_block_address, m_max_block_address);
|
|
m_heap.for_each_block([&](auto& block) {
|
|
m_all_live_heap_blocks.set(&block);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
for (auto& [root, root_origin] : roots) {
|
|
auto& graph_node = m_graph.ensure(bit_cast<FlatPtr>(root));
|
|
graph_node.class_name = root->class_name();
|
|
graph_node.root_origin = root_origin;
|
|
|
|
m_work_queue.append(*root);
|
|
}
|
|
}
|
|
|
|
virtual void visit_impl(Cell& cell) override
|
|
{
|
|
if (m_node_being_visited)
|
|
m_node_being_visited->edges.set(reinterpret_cast<FlatPtr>(&cell));
|
|
|
|
if (m_graph.get(reinterpret_cast<FlatPtr>(&cell)).has_value())
|
|
return;
|
|
|
|
m_work_queue.append(cell);
|
|
}
|
|
|
|
virtual void visit_possible_values(ReadonlyBytes bytes) override
|
|
{
|
|
HashMap<FlatPtr, HeapRoot> possible_pointers;
|
|
|
|
auto* raw_pointer_sized_values = reinterpret_cast<FlatPtr const*>(bytes.data());
|
|
for (size_t i = 0; i < (bytes.size() / sizeof(FlatPtr)); ++i)
|
|
add_possible_value(possible_pointers, raw_pointer_sized_values[i], HeapRoot { .type = HeapRoot::Type::HeapFunctionCapturedPointer }, m_min_block_address, m_max_block_address);
|
|
|
|
for_each_cell_among_possible_pointers(m_all_live_heap_blocks, possible_pointers, [&](Cell* cell, FlatPtr) {
|
|
if (m_node_being_visited)
|
|
m_node_being_visited->edges.set(reinterpret_cast<FlatPtr>(cell));
|
|
|
|
if (m_graph.get(reinterpret_cast<FlatPtr>(&cell)).has_value())
|
|
return;
|
|
m_work_queue.append(*cell);
|
|
});
|
|
}
|
|
|
|
void visit_all_cells()
|
|
{
|
|
while (!m_work_queue.is_empty()) {
|
|
auto cell = m_work_queue.take_last();
|
|
m_node_being_visited = &m_graph.ensure(bit_cast<FlatPtr>(cell.ptr()));
|
|
m_node_being_visited->class_name = cell->class_name();
|
|
cell->visit_edges(*this);
|
|
m_node_being_visited = nullptr;
|
|
}
|
|
}
|
|
|
|
AK::JsonObject dump()
|
|
{
|
|
auto graph = AK::JsonObject();
|
|
for (auto& it : m_graph) {
|
|
AK::JsonArray edges;
|
|
for (auto const& value : it.value.edges) {
|
|
edges.must_append(ByteString::formatted("{}", value));
|
|
}
|
|
|
|
auto node = AK::JsonObject();
|
|
if (it.value.root_origin.has_value()) {
|
|
auto type = it.value.root_origin->type;
|
|
auto location = it.value.root_origin->location;
|
|
switch (type) {
|
|
case HeapRoot::Type::Root:
|
|
node.set("root"sv, ByteString::formatted("Root {} {}:{}", location->function_name(), location->filename(), location->line_number()));
|
|
break;
|
|
case HeapRoot::Type::MarkedVector:
|
|
node.set("root"sv, "MarkedVector");
|
|
break;
|
|
case HeapRoot::Type::RegisterPointer:
|
|
node.set("root"sv, "RegisterPointer");
|
|
break;
|
|
case HeapRoot::Type::StackPointer:
|
|
node.set("root"sv, "StackPointer");
|
|
break;
|
|
case HeapRoot::Type::VM:
|
|
node.set("root"sv, "VM");
|
|
break;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
node.set("class_name"sv, it.value.class_name);
|
|
node.set("edges"sv, edges);
|
|
graph.set(ByteString::number(it.key), node);
|
|
}
|
|
|
|
return graph;
|
|
}
|
|
|
|
private:
|
|
struct GraphNode {
|
|
Optional<HeapRoot> root_origin;
|
|
StringView class_name;
|
|
HashTable<FlatPtr> edges {};
|
|
};
|
|
|
|
GraphNode* m_node_being_visited { nullptr };
|
|
Vector<Ref<Cell>> m_work_queue;
|
|
HashMap<FlatPtr, GraphNode> m_graph;
|
|
|
|
Heap& m_heap;
|
|
HashTable<HeapBlock*> m_all_live_heap_blocks;
|
|
FlatPtr m_min_block_address;
|
|
FlatPtr m_max_block_address;
|
|
};
|
|
|
|
AK::JsonObject Heap::dump_graph()
|
|
{
|
|
HashMap<Cell*, HeapRoot> roots;
|
|
gather_roots(roots);
|
|
GraphConstructorVisitor visitor(*this, roots);
|
|
visitor.visit_all_cells();
|
|
return visitor.dump();
|
|
}
|
|
|
|
void Heap::collect_garbage(CollectionType collection_type, bool print_report)
|
|
{
|
|
VERIFY(!m_collecting_garbage);
|
|
TemporaryChange change(m_collecting_garbage, true);
|
|
|
|
Core::ElapsedTimer collection_measurement_timer;
|
|
if (print_report)
|
|
collection_measurement_timer.start();
|
|
|
|
if (collection_type == CollectionType::CollectGarbage) {
|
|
if (m_gc_deferrals) {
|
|
m_should_gc_when_deferral_ends = true;
|
|
return;
|
|
}
|
|
HashMap<Cell*, HeapRoot> roots;
|
|
gather_roots(roots);
|
|
mark_live_cells(roots);
|
|
}
|
|
finalize_unmarked_cells();
|
|
sweep_dead_cells(print_report, collection_measurement_timer);
|
|
}
|
|
|
|
void Heap::gather_roots(HashMap<Cell*, HeapRoot>& roots)
|
|
{
|
|
m_gather_embedder_roots(roots);
|
|
gather_conservative_roots(roots);
|
|
|
|
for (auto& root : m_roots)
|
|
roots.set(root.cell(), HeapRoot { .type = HeapRoot::Type::Root, .location = &root.source_location() });
|
|
|
|
for (auto& vector : m_marked_vectors)
|
|
vector.gather_roots(roots);
|
|
|
|
if constexpr (HEAP_DEBUG) {
|
|
dbgln("gather_roots:");
|
|
for (auto* root : roots.keys())
|
|
dbgln(" + {}", root);
|
|
}
|
|
}
|
|
|
|
#ifdef HAS_ADDRESS_SANITIZER
|
|
NO_SANITIZE_ADDRESS void Heap::gather_asan_fake_stack_roots(HashMap<FlatPtr, HeapRoot>& possible_pointers, FlatPtr addr, FlatPtr min_block_address, FlatPtr max_block_address)
|
|
{
|
|
void* begin = nullptr;
|
|
void* end = nullptr;
|
|
void* real_stack = __asan_addr_is_in_fake_stack(__asan_get_current_fake_stack(), reinterpret_cast<void*>(addr), &begin, &end);
|
|
|
|
if (real_stack != nullptr) {
|
|
for (auto* real_stack_addr = reinterpret_cast<void const* const*>(begin); real_stack_addr < end; ++real_stack_addr) {
|
|
void const* real_address = *real_stack_addr;
|
|
if (real_address == nullptr)
|
|
continue;
|
|
add_possible_value(possible_pointers, reinterpret_cast<FlatPtr>(real_address), HeapRoot { .type = HeapRoot::Type::StackPointer }, min_block_address, max_block_address);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
void Heap::gather_asan_fake_stack_roots(HashMap<FlatPtr, HeapRoot>&, FlatPtr, FlatPtr, FlatPtr)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
NO_SANITIZE_ADDRESS void Heap::gather_conservative_roots(HashMap<Cell*, HeapRoot>& roots)
|
|
{
|
|
FlatPtr dummy;
|
|
|
|
dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
|
|
|
|
jmp_buf buf;
|
|
setjmp(buf);
|
|
|
|
HashMap<FlatPtr, HeapRoot> possible_pointers;
|
|
|
|
auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
|
|
|
|
FlatPtr min_block_address, max_block_address;
|
|
find_min_and_max_block_addresses(min_block_address, max_block_address);
|
|
|
|
for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); ++i)
|
|
add_possible_value(possible_pointers, raw_jmp_buf[i], HeapRoot { .type = HeapRoot::Type::RegisterPointer }, min_block_address, max_block_address);
|
|
|
|
auto stack_reference = bit_cast<FlatPtr>(&dummy);
|
|
|
|
for (FlatPtr stack_address = stack_reference; stack_address < m_stack_info.top(); stack_address += sizeof(FlatPtr)) {
|
|
auto data = *reinterpret_cast<FlatPtr*>(stack_address);
|
|
add_possible_value(possible_pointers, data, HeapRoot { .type = HeapRoot::Type::StackPointer }, min_block_address, max_block_address);
|
|
gather_asan_fake_stack_roots(possible_pointers, data, min_block_address, max_block_address);
|
|
}
|
|
|
|
for (auto& vector : m_conservative_vectors) {
|
|
for (auto possible_value : vector.possible_values()) {
|
|
add_possible_value(possible_pointers, possible_value, HeapRoot { .type = HeapRoot::Type::ConservativeVector }, min_block_address, max_block_address);
|
|
}
|
|
}
|
|
|
|
HashTable<HeapBlock*> all_live_heap_blocks;
|
|
for_each_block([&](auto& block) {
|
|
all_live_heap_blocks.set(&block);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
for_each_cell_among_possible_pointers(all_live_heap_blocks, possible_pointers, [&](Cell* cell, FlatPtr possible_pointer) {
|
|
if (cell->state() == Cell::State::Live) {
|
|
dbgln_if(HEAP_DEBUG, " ?-> {}", (void const*)cell);
|
|
roots.set(cell, *possible_pointers.get(possible_pointer));
|
|
} else {
|
|
dbgln_if(HEAP_DEBUG, " #-> {}", (void const*)cell);
|
|
}
|
|
});
|
|
}
|
|
|
|
class MarkingVisitor final : public Cell::Visitor {
|
|
public:
|
|
explicit MarkingVisitor(Heap& heap, HashMap<Cell*, HeapRoot> const& roots)
|
|
: m_heap(heap)
|
|
{
|
|
m_heap.find_min_and_max_block_addresses(m_min_block_address, m_max_block_address);
|
|
m_heap.for_each_block([&](auto& block) {
|
|
m_all_live_heap_blocks.set(&block);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
for (auto* root : roots.keys()) {
|
|
visit(root);
|
|
}
|
|
}
|
|
|
|
virtual void visit_impl(Cell& cell) override
|
|
{
|
|
if (cell.is_marked())
|
|
return;
|
|
dbgln_if(HEAP_DEBUG, " ! {}", &cell);
|
|
|
|
cell.set_marked(true);
|
|
m_work_queue.append(cell);
|
|
}
|
|
|
|
virtual void visit_possible_values(ReadonlyBytes bytes) override
|
|
{
|
|
HashMap<FlatPtr, HeapRoot> possible_pointers;
|
|
|
|
auto* raw_pointer_sized_values = reinterpret_cast<FlatPtr const*>(bytes.data());
|
|
for (size_t i = 0; i < (bytes.size() / sizeof(FlatPtr)); ++i)
|
|
add_possible_value(possible_pointers, raw_pointer_sized_values[i], HeapRoot { .type = HeapRoot::Type::HeapFunctionCapturedPointer }, m_min_block_address, m_max_block_address);
|
|
|
|
for_each_cell_among_possible_pointers(m_all_live_heap_blocks, possible_pointers, [&](Cell* cell, FlatPtr) {
|
|
if (cell->is_marked())
|
|
return;
|
|
if (cell->state() != Cell::State::Live)
|
|
return;
|
|
cell->set_marked(true);
|
|
m_work_queue.append(*cell);
|
|
});
|
|
}
|
|
|
|
void mark_all_live_cells()
|
|
{
|
|
while (!m_work_queue.is_empty()) {
|
|
m_work_queue.take_last()->visit_edges(*this);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Heap& m_heap;
|
|
Vector<Ref<Cell>> m_work_queue;
|
|
HashTable<HeapBlock*> m_all_live_heap_blocks;
|
|
FlatPtr m_min_block_address;
|
|
FlatPtr m_max_block_address;
|
|
};
|
|
|
|
void Heap::mark_live_cells(HashMap<Cell*, HeapRoot> const& roots)
|
|
{
|
|
dbgln_if(HEAP_DEBUG, "mark_live_cells:");
|
|
|
|
MarkingVisitor visitor(*this, roots);
|
|
|
|
visitor.mark_all_live_cells();
|
|
|
|
for (auto& inverse_root : m_uprooted_cells)
|
|
inverse_root->set_marked(false);
|
|
|
|
m_uprooted_cells.clear();
|
|
}
|
|
|
|
bool Heap::cell_must_survive_garbage_collection(Cell const& cell)
|
|
{
|
|
if (!cell.overrides_must_survive_garbage_collection({}))
|
|
return false;
|
|
return cell.must_survive_garbage_collection();
|
|
}
|
|
|
|
void Heap::finalize_unmarked_cells()
|
|
{
|
|
for_each_block([&](auto& block) {
|
|
block.template for_each_cell_in_state<Cell::State::Live>([](Cell* cell) {
|
|
if (!cell->is_marked() && !cell_must_survive_garbage_collection(*cell))
|
|
cell->finalize();
|
|
});
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
|
|
void Heap::sweep_dead_cells(bool print_report, Core::ElapsedTimer const& measurement_timer)
|
|
{
|
|
dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
|
|
Vector<HeapBlock*, 32> empty_blocks;
|
|
Vector<HeapBlock*, 32> full_blocks_that_became_usable;
|
|
|
|
size_t collected_cells = 0;
|
|
size_t live_cells = 0;
|
|
size_t collected_cell_bytes = 0;
|
|
size_t live_cell_bytes = 0;
|
|
|
|
for_each_block([&](auto& block) {
|
|
bool block_has_live_cells = false;
|
|
bool block_was_full = block.is_full();
|
|
block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
|
|
if (!cell->is_marked() && !cell_must_survive_garbage_collection(*cell)) {
|
|
dbgln_if(HEAP_DEBUG, " ~ {}", cell);
|
|
block.deallocate(cell);
|
|
++collected_cells;
|
|
collected_cell_bytes += block.cell_size();
|
|
} else {
|
|
cell->set_marked(false);
|
|
block_has_live_cells = true;
|
|
++live_cells;
|
|
live_cell_bytes += block.cell_size();
|
|
}
|
|
});
|
|
if (!block_has_live_cells)
|
|
empty_blocks.append(&block);
|
|
else if (block_was_full != block.is_full())
|
|
full_blocks_that_became_usable.append(&block);
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
for (auto& weak_container : m_weak_containers)
|
|
weak_container.remove_dead_cells({});
|
|
|
|
for (auto* block : empty_blocks) {
|
|
dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
|
|
block->cell_allocator().block_did_become_empty({}, *block);
|
|
}
|
|
|
|
for (auto* block : full_blocks_that_became_usable) {
|
|
dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
|
|
block->cell_allocator().block_did_become_usable({}, *block);
|
|
}
|
|
|
|
if constexpr (HEAP_DEBUG) {
|
|
for_each_block([&](auto& block) {
|
|
dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
|
|
return IterationDecision::Continue;
|
|
});
|
|
}
|
|
|
|
m_gc_bytes_threshold = live_cell_bytes > GC_MIN_BYTES_THRESHOLD ? live_cell_bytes : GC_MIN_BYTES_THRESHOLD;
|
|
|
|
if (print_report) {
|
|
AK::Duration const time_spent = measurement_timer.elapsed_time();
|
|
size_t live_block_count = 0;
|
|
for_each_block([&](auto&) {
|
|
++live_block_count;
|
|
return IterationDecision::Continue;
|
|
});
|
|
|
|
dbgln("Garbage collection report");
|
|
dbgln("=============================================");
|
|
dbgln(" Time spent: {} ms", time_spent.to_milliseconds());
|
|
dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
|
|
dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
|
|
dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
|
|
dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
|
|
dbgln("=============================================");
|
|
}
|
|
}
|
|
|
|
void Heap::defer_gc()
|
|
{
|
|
++m_gc_deferrals;
|
|
}
|
|
|
|
void Heap::undefer_gc()
|
|
{
|
|
VERIFY(m_gc_deferrals > 0);
|
|
--m_gc_deferrals;
|
|
|
|
if (!m_gc_deferrals) {
|
|
if (m_should_gc_when_deferral_ends)
|
|
collect_garbage();
|
|
m_should_gc_when_deferral_ends = false;
|
|
}
|
|
}
|
|
|
|
void Heap::uproot_cell(Cell* cell)
|
|
{
|
|
m_uprooted_cells.append(cell);
|
|
}
|
|
|
|
}
|