ladybird/Kernel/init.cpp
Liav A c616eb6aaf Init Stage: Use latest changes
Now we setup interrupts before ACPI, and we don't use the ACPI
parser to find the MADT table anymore.
2020-02-29 00:12:46 +01:00

488 lines
15 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "Devices/PATADiskDevice.h"
#include "KSyms.h"
#include "Process.h"
#include "RTC.h"
#include "Scheduler.h"
#include <AK/Types.h>
#include <Kernel/ACPI/ACPIDynamicParser.h>
#include <Kernel/ACPI/ACPIStaticParser.h>
#include <Kernel/ACPI/DMIDecoder.h>
#include <Kernel/ACPI/MultiProcessorParser.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/CMOS.h>
#include <Kernel/Devices/BXVGADevice.h>
#include <Kernel/Devices/DebugLogDevice.h>
#include <Kernel/Devices/DiskPartition.h>
#include <Kernel/Devices/EBRPartitionTable.h>
#include <Kernel/Devices/FloppyDiskDevice.h>
#include <Kernel/Devices/FullDevice.h>
#include <Kernel/Devices/GPTPartitionTable.h>
#include <Kernel/Devices/KeyboardDevice.h>
#include <Kernel/Devices/MBRPartitionTable.h>
#include <Kernel/Devices/MBVGADevice.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/Devices/PATAChannel.h>
#include <Kernel/Devices/PIT.h>
#include <Kernel/Devices/PS2MouseDevice.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Devices/SB16.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/VMWareBackdoor.h>
#include <Kernel/Devices/ZeroDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/Interrupts/PIC.h>
#include <Kernel/KParams.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Net/LoopbackAdapter.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/PCI/Initializer.h>
#include <Kernel/Random.h>
#include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/VM/MemoryManager.h>
// Defined in the linker script
typedef void (*ctor_func_t)();
extern ctor_func_t start_ctors;
extern ctor_func_t end_ctors;
extern u32 __stack_chk_guard;
u32 __stack_chk_guard;
namespace Kernel {
[[noreturn]] static void init_stage2();
static void setup_serial_debug();
static void setup_acpi();
static void setup_vmmouse();
static void setup_pci();
static void setup_interrupts();
VirtualConsole* tty0;
extern "C" [[noreturn]] void init()
{
setup_serial_debug();
cpu_setup();
kmalloc_init();
slab_alloc_init();
new KParams(String(reinterpret_cast<const char*>(low_physical_to_virtual(multiboot_info_ptr->cmdline))));
MemoryManager::initialize();
bool text_debug = KParams::the().has("text_debug");
gdt_init();
idt_init();
setup_interrupts();
setup_acpi();
new VFS;
new DebugLogDevice;
new Console;
kprintf("Starting SerenityOS...\n");
__stack_chk_guard = get_good_random<u32>();
PIT::initialize();
RTC::initialize();
// call global constructors after gtd and itd init
for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++)
(*ctor)();
new KeyboardDevice;
new PS2MouseDevice;
setup_vmmouse();
new SB16;
new NullDevice;
if (!get_serial_debug())
new SerialDevice(SERIAL_COM1_ADDR, 64);
new SerialDevice(SERIAL_COM2_ADDR, 65);
new SerialDevice(SERIAL_COM3_ADDR, 66);
new SerialDevice(SERIAL_COM4_ADDR, 67);
VirtualConsole::initialize();
tty0 = new VirtualConsole(0, VirtualConsole::AdoptCurrentVGABuffer);
new VirtualConsole(1);
VirtualConsole::switch_to(0);
// Sample test to see if the ACPI parser is working...
kprintf("ACPI: HPET table @ P 0x%x\n", ACPI::Parser::the().find_table("HPET").get());
setup_pci();
PIT::initialize();
if (text_debug) {
dbg() << "Text mode enabled";
} else {
if (multiboot_info_ptr->framebuffer_type == 1 || multiboot_info_ptr->framebuffer_type == 2) {
new MBVGADevice(
PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)),
multiboot_info_ptr->framebuffer_pitch,
multiboot_info_ptr->framebuffer_width,
multiboot_info_ptr->framebuffer_height);
} else {
new BXVGADevice;
}
}
LoopbackAdapter::the();
Process::initialize();
Thread::initialize();
Thread* init_stage2_thread = nullptr;
Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2);
Thread* syncd_thread = nullptr;
Process::create_kernel_process(syncd_thread, "syncd", [] {
for (;;) {
VFS::the().sync();
Thread::current->sleep(1 * TICKS_PER_SECOND);
}
});
Process::create_kernel_process(g_finalizer, "Finalizer", [] {
Thread::current->set_priority(THREAD_PRIORITY_LOW);
for (;;) {
{
InterruptDisabler disabler;
if (!g_finalizer_has_work)
Thread::current->wait_on(*g_finalizer_wait_queue);
ASSERT(g_finalizer_has_work);
g_finalizer_has_work = false;
}
Thread::finalize_dying_threads();
}
});
Scheduler::pick_next();
sti();
Scheduler::idle_loop();
ASSERT_NOT_REACHED();
}
void init_stage2()
{
Syscall::initialize();
new ZeroDevice;
new FullDevice;
new RandomDevice;
new PTYMultiplexer;
bool dmi_unreliable = KParams::the().has("dmi_unreliable");
if (dmi_unreliable) {
DMIDecoder::initialize_untrusted();
} else {
DMIDecoder::initialize();
}
bool text_debug = KParams::the().has("text_debug");
bool force_pio = KParams::the().has("force_pio");
auto root = KParams::the().get("root");
if (root.is_empty()) {
root = "/dev/hda";
}
if (!root.starts_with("/dev/hda")) {
kprintf("init_stage2: root filesystem must be on the first IDE hard drive (/dev/hda)\n");
hang();
}
auto pata0 = PATAChannel::create(PATAChannel::ChannelType::Primary, force_pio);
NonnullRefPtr<BlockDevice> root_dev = *pata0->master_device();
root = root.substring(strlen("/dev/hda"), root.length() - strlen("/dev/hda"));
if (root.length()) {
bool ok;
unsigned partition_number = root.to_uint(ok);
if (!ok) {
kprintf("init_stage2: couldn't parse partition number from root kernel parameter\n");
hang();
}
MBRPartitionTable mbr(root_dev);
if (!mbr.initialize()) {
kprintf("init_stage2: couldn't read MBR from disk\n");
hang();
}
if (mbr.is_protective_mbr()) {
dbg() << "GPT Partitioned Storage Detected!";
GPTPartitionTable gpt(root_dev);
if (!gpt.initialize()) {
kprintf("init_stage2: couldn't read GPT from disk\n");
hang();
}
auto partition = gpt.partition(partition_number);
if (!partition) {
kprintf("init_stage2: couldn't get partition %d\n", partition_number);
hang();
}
root_dev = *partition;
} else {
dbg() << "MBR Partitioned Storage Detected!";
if (mbr.contains_ebr()) {
EBRPartitionTable ebr(root_dev);
if (!ebr.initialize()) {
kprintf("init_stage2: couldn't read EBR from disk\n");
hang();
}
auto partition = ebr.partition(partition_number);
if (!partition) {
kprintf("init_stage2: couldn't get partition %d\n", partition_number);
hang();
}
root_dev = *partition;
} else {
if (partition_number < 1 || partition_number > 4) {
kprintf("init_stage2: invalid partition number %d; expected 1 to 4\n", partition_number);
hang();
}
auto partition = mbr.partition(partition_number);
if (!partition) {
kprintf("init_stage2: couldn't get partition %d\n", partition_number);
hang();
}
root_dev = *partition;
}
}
}
auto e2fs = Ext2FS::create(root_dev);
if (!e2fs->initialize()) {
kprintf("init_stage2: couldn't open root filesystem\n");
hang();
}
if (!VFS::the().mount_root(e2fs)) {
kprintf("VFS::mount_root failed\n");
hang();
}
Process::current->set_root_directory(VFS::the().root_custody());
dbg() << "Load ksyms";
load_ksyms();
dbg() << "Loaded ksyms";
// Now, detect whether or not there are actually any floppy disks attached to the system
u8 detect = CMOS::read(0x10);
RefPtr<FloppyDiskDevice> fd0;
RefPtr<FloppyDiskDevice> fd1;
if ((detect >> 4) & 0x4) {
fd0 = FloppyDiskDevice::create(FloppyDiskDevice::DriveType::Master);
kprintf("fd0 is 1.44MB floppy drive\n");
} else {
kprintf("fd0 type unsupported! Type == 0x%x\n", detect >> 4);
}
if (detect & 0x0f) {
fd1 = FloppyDiskDevice::create(FloppyDiskDevice::DriveType::Slave);
kprintf("fd1 is 1.44MB floppy drive");
} else {
kprintf("fd1 type unsupported! Type == 0x%x\n", detect & 0x0f);
}
int error;
// SystemServer will start WindowServer, which will be doing graphics.
// From this point on we don't want to touch the VGA text terminal or
// accept keyboard input.
if (text_debug) {
tty0->set_graphical(false);
Thread* thread = nullptr;
Process::create_user_process(thread, "/bin/Shell", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0);
if (error != 0) {
kprintf("init_stage2: error spawning Shell: %d\n", error);
hang();
}
thread->set_priority(THREAD_PRIORITY_HIGH);
} else {
tty0->set_graphical(true);
Thread* thread = nullptr;
Process::create_user_process(thread, "/bin/SystemServer", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0);
if (error != 0) {
kprintf("init_stage2: error spawning SystemServer: %d\n", error);
hang();
}
thread->set_priority(THREAD_PRIORITY_HIGH);
}
{
Thread* thread = nullptr;
Process::create_kernel_process(thread, "NetworkTask", NetworkTask_main);
}
Process::current->sys$exit(0);
ASSERT_NOT_REACHED();
}
void setup_serial_debug()
{
// this is only used one time, directly below here. we can't use this part
// of libc at this point in the boot process, or we'd just pull strstr in
// from <string.h>.
auto bad_prefix_check = [](const char* str, const char* search) -> bool {
while (*search)
if (*search++ != *str++)
return false;
return true;
};
// serial_debug will output all the kprintf and dbgprintf data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
//
// note: it must be the first option in the boot cmdline.
u32 cmdline = low_physical_to_virtual(multiboot_info_ptr->cmdline);
if (cmdline && bad_prefix_check(reinterpret_cast<const char*>(cmdline), "serial_debug"))
set_serial_debug(true);
}
extern "C" {
multiboot_info_t* multiboot_info_ptr;
}
// Define some Itanium C++ ABI methods to stop the linker from complaining
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
extern "C" int __cxa_atexit(void (*)(void*), void*, void*)
{
ASSERT_NOT_REACHED();
return 0;
}
void setup_acpi()
{
if (!KParams::the().has("acpi")) {
ACPI::DynamicParser::initialize_without_rsdp();
return;
}
auto acpi = KParams::the().get("acpi");
if (acpi == "off") {
ACPI::Parser::initialize_limited();
return;
}
if (acpi == "on") {
ACPI::DynamicParser::initialize_without_rsdp();
return;
}
if (acpi == "limited") {
ACPI::StaticParser::initialize_without_rsdp();
return;
}
kprintf("acpi boot argmuent has an invalid value.\n");
hang();
}
void setup_vmmouse()
{
VMWareBackdoor::initialize();
if (!KParams::the().has("vmmouse")) {
VMWareBackdoor::the().enable_absolute_vmmouse();
return;
}
auto vmmouse = KParams::the().get("vmmouse");
if (vmmouse == "off")
return;
if (vmmouse == "on") {
VMWareBackdoor::the().enable_absolute_vmmouse();
return;
}
kprintf("vmmouse boot argmuent has an invalid value.\n");
hang();
}
void setup_pci()
{
if (!KParams::the().has("pci_mmio")) {
PCI::Initializer::the().test_and_initialize(false);
PCI::Initializer::the().dismiss();
return;
}
auto pci_mmio = KParams::the().get("pci_mmio");
if (pci_mmio == "on") {
PCI::Initializer::the().test_and_initialize(false);
} else if (pci_mmio == "off") {
PCI::Initializer::the().test_and_initialize(true);
} else {
kprintf("pci_mmio boot argmuent has an invalid value.\n");
hang();
}
PCI::Initializer::the().dismiss();
}
void setup_interrupts()
{
InterruptManagement::initialize();
if (!KParams::the().has("smp")) {
InterruptManagement::the().switch_to_pic_mode();
return;
}
auto smp = KParams::the().get("smp");
if (smp == "off") {
InterruptManagement::the().switch_to_pic_mode();
return;
}
if (smp == "on") {
ASSERT_NOT_REACHED(); // FIXME: The IOAPIC mode is not stable yet so we can't use it now.
InterruptManagement::the().switch_to_ioapic_mode();
APIC::init();
APIC::enable_bsp();
return;
}
kprintf("smp boot argmuent has an invalid value.\n");
hang();
}
}