ladybird/Kernel/Thread.h
Tom 838d9fa251 Kernel: Make Thread refcounted
Similar to Process, we need to make Thread refcounted. This will solve
problems that will appear once we schedule threads on more than one
processor. This allows us to hold onto threads without necessarily
holding the scheduler lock for the entire duration.
2020-09-27 19:46:04 +02:00

787 lines
24 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Function.h>
#include <AK/IntrusiveList.h>
#include <AK/Optional.h>
#include <AK/OwnPtr.h>
#include <AK/String.h>
#include <AK/Vector.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Forward.h>
#include <Kernel/KResult.h>
#include <Kernel/Scheduler.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/UnixTypes.h>
#include <LibC/fd_set.h>
#include <LibELF/AuxiliaryVector.h>
namespace Kernel {
enum class ShouldUnblockThread {
No = 0,
Yes
};
struct SignalActionData {
VirtualAddress handler_or_sigaction;
u32 mask { 0 };
int flags { 0 };
};
struct ThreadSpecificData {
ThreadSpecificData* self;
};
#define THREAD_PRIORITY_MIN 1
#define THREAD_PRIORITY_LOW 10
#define THREAD_PRIORITY_NORMAL 30
#define THREAD_PRIORITY_HIGH 50
#define THREAD_PRIORITY_MAX 99
#define THREAD_AFFINITY_DEFAULT 0xffffffff
class Thread
: public RefCounted<Thread>
, public Weakable<Thread> {
AK_MAKE_NONCOPYABLE(Thread);
AK_MAKE_NONMOVABLE(Thread);
friend class Process;
friend class Scheduler;
public:
inline static Thread* current()
{
return Processor::current().current_thread();
}
explicit Thread(NonnullRefPtr<Process>);
~Thread();
static RefPtr<Thread> from_tid(ThreadID);
static void finalize_dying_threads();
ThreadID tid() const { return m_tid; }
ProcessID pid() const;
void set_priority(u32 p) { m_priority = p; }
u32 priority() const { return m_priority; }
void set_priority_boost(u32 boost) { m_priority_boost = boost; }
u32 priority_boost() const { return m_priority_boost; }
u32 effective_priority() const;
KResult try_join(Thread& joiner)
{
if (&joiner == this)
return KResult(-EDEADLK);
ScopedSpinLock lock(m_lock);
if (!m_is_joinable || state() == Dead)
return KResult(-EINVAL);
Thread* expected = nullptr;
if (!m_joiner.compare_exchange_strong(expected, &joiner, AK::memory_order_acq_rel))
return KResult(-EINVAL);
// From this point on the thread is no longer joinable by anyone
// else. It also means that if the join is timed, it becomes
// detached when a timeout happens.
m_is_joinable = false;
return KSuccess;
}
void join_done()
{
// To avoid possible deadlocking, this function must not acquire
// m_lock. This deadlock could occur if the joiner times out
// almost at the same time as this thread, and calls into this
// function to clear the joiner.
m_joiner.store(nullptr, AK::memory_order_release);
}
void detach()
{
ScopedSpinLock lock(m_lock);
m_is_joinable = false;
}
bool is_joinable() const
{
ScopedSpinLock lock(m_lock);
return m_is_joinable;
}
Process& process() { return m_process; }
const Process& process() const { return m_process; }
String backtrace();
Vector<FlatPtr> raw_backtrace(FlatPtr ebp, FlatPtr eip) const;
String name() const
{
// Because the name can be changed, we can't return a const
// reference here. We must make a copy
ScopedSpinLock lock(m_lock);
return m_name;
}
void set_name(const StringView& s)
{
ScopedSpinLock lock(m_lock);
m_name = s;
}
void set_name(String&& name)
{
ScopedSpinLock lock(m_lock);
m_name = move(name);
}
void finalize();
enum State : u8 {
Invalid = 0,
Runnable,
Running,
Dying,
Dead,
Stopped,
Blocked,
Queued,
};
class Blocker {
public:
virtual ~Blocker() { }
virtual bool should_unblock(Thread&) = 0;
virtual const char* state_string() const = 0;
virtual bool is_reason_signal() const { return false; }
virtual timespec* override_timeout(timespec* timeout) { return timeout; }
virtual void was_unblocked() { }
void set_interrupted_by_death()
{
ScopedSpinLock lock(m_lock);
m_was_interrupted_by_death = true;
}
bool was_interrupted_by_death() const
{
ScopedSpinLock lock(m_lock);
return m_was_interrupted_by_death;
}
void set_interrupted_by_signal()
{
ScopedSpinLock lock(m_lock);
m_was_interrupted_while_blocked = true;
}
bool was_interrupted_by_signal() const
{
ScopedSpinLock lock(m_lock);
return m_was_interrupted_while_blocked;
}
protected:
mutable RecursiveSpinLock m_lock;
private:
bool m_was_interrupted_while_blocked { false };
bool m_was_interrupted_by_death { false };
friend class Thread;
};
class JoinBlocker final : public Blocker {
public:
explicit JoinBlocker(Thread& joinee, KResult& try_join_result, void*& joinee_exit_value);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Joining"; }
virtual void was_unblocked() override;
void joinee_exited(void* value);
private:
Thread* m_joinee;
void*& m_joinee_exit_value;
bool m_join_error { false };
};
class FileDescriptionBlocker : public Blocker {
public:
const FileDescription& blocked_description() const;
protected:
explicit FileDescriptionBlocker(const FileDescription&);
private:
NonnullRefPtr<FileDescription> m_blocked_description;
};
class AcceptBlocker final : public FileDescriptionBlocker {
public:
explicit AcceptBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Accepting"; }
};
class ConnectBlocker final : public FileDescriptionBlocker {
public:
explicit ConnectBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Connecting"; }
};
class WriteBlocker final : public FileDescriptionBlocker {
public:
explicit WriteBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Writing"; }
virtual timespec* override_timeout(timespec*) override;
private:
timespec m_deadline;
};
class ReadBlocker final : public FileDescriptionBlocker {
public:
explicit ReadBlocker(const FileDescription&);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Reading"; }
virtual timespec* override_timeout(timespec*) override;
private:
timespec m_deadline;
};
class ConditionBlocker final : public Blocker {
public:
ConditionBlocker(const char* state_string, Function<bool()>&& condition);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return m_state_string; }
private:
Function<bool()> m_block_until_condition;
const char* m_state_string { nullptr };
};
class SleepBlocker final : public Blocker {
public:
explicit SleepBlocker(u64 wakeup_time);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Sleeping"; }
private:
u64 m_wakeup_time { 0 };
};
class SelectBlocker final : public Blocker {
public:
typedef Vector<int, FD_SETSIZE> FDVector;
SelectBlocker(const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Selecting"; }
private:
const FDVector& m_select_read_fds;
const FDVector& m_select_write_fds;
const FDVector& m_select_exceptional_fds;
};
class WaitBlocker final : public Blocker {
public:
WaitBlocker(int wait_options, ProcessID& waitee_pid);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override { return "Waiting"; }
private:
int m_wait_options { 0 };
ProcessID& m_waitee_pid;
};
class SemiPermanentBlocker final : public Blocker {
public:
enum class Reason {
Signal,
};
SemiPermanentBlocker(Reason reason);
virtual bool should_unblock(Thread&) override;
virtual const char* state_string() const override
{
switch (m_reason) {
case Reason::Signal:
return "Signal";
}
ASSERT_NOT_REACHED();
}
virtual bool is_reason_signal() const override { return m_reason == Reason::Signal; }
private:
Reason m_reason;
};
void did_schedule() { ++m_times_scheduled; }
u32 times_scheduled() const { return m_times_scheduled; }
void resume_from_stopped();
bool is_stopped() const { return m_state == Stopped; }
bool is_blocked() const { return m_state == Blocked; }
bool has_blocker() const
{
ASSERT(m_lock.own_lock());
return m_blocker != nullptr;
}
const Blocker& blocker() const;
u32 cpu() const { return m_cpu.load(AK::MemoryOrder::memory_order_consume); }
void set_cpu(u32 cpu) { m_cpu.store(cpu, AK::MemoryOrder::memory_order_release); }
u32 affinity() const { return m_cpu_affinity; }
void set_affinity(u32 affinity) { m_cpu_affinity = affinity; }
u32 stack_ptr() const { return m_tss.esp; }
RegisterState& get_register_dump_from_stack();
TSS32& tss() { return m_tss; }
const TSS32& tss() const { return m_tss; }
State state() const { return m_state; }
const char* state_string() const;
u32 ticks() const { return m_ticks; }
VirtualAddress thread_specific_data() const { return m_thread_specific_data; }
size_t thread_specific_region_size() const { return m_thread_specific_region_size; }
u64 sleep(u64 ticks);
u64 sleep_until(u64 wakeup_time);
class BlockResult {
public:
enum Type {
WokeNormally,
NotBlocked,
InterruptedBySignal,
InterruptedByDeath,
InterruptedByTimeout,
};
BlockResult() = delete;
BlockResult(Type type)
: m_type(type)
{
}
bool operator==(Type type) const
{
return m_type == type;
}
bool was_interrupted() const
{
switch (m_type) {
case InterruptedBySignal:
case InterruptedByDeath:
case InterruptedByTimeout:
return true;
default:
return false;
}
}
private:
Type m_type;
};
template<typename T, class... Args>
[[nodiscard]] BlockResult block(timespec* timeout, Args&&... args)
{
T t(forward<Args>(args)...);
ScopedSpinLock lock(m_lock);
// We should never be blocking a blocked (or otherwise non-active) thread.
ASSERT(state() == Thread::Running);
ASSERT(m_blocker == nullptr);
if (t.should_unblock(*this)) {
// Don't block if the wake condition is already met
return BlockResult::NotBlocked;
}
m_blocker = &t;
m_blocker_timeout = t.override_timeout(timeout);
set_state(Thread::Blocked);
// Release our lock
lock.unlock();
// Yield to the scheduler, and wait for us to resume unblocked.
yield_without_holding_big_lock();
// Acquire our lock again
lock.lock();
// We should no longer be blocked once we woke up
ASSERT(state() != Thread::Blocked);
// Remove ourselves...
m_blocker = nullptr;
m_blocker_timeout = nullptr;
// Notify the blocker that we are no longer blocking. It may need
// to clean up now while we're still holding m_lock
t.was_unblocked();
if (t.was_interrupted_by_death())
return BlockResult::InterruptedByDeath;
if (t.was_interrupted_by_signal())
return BlockResult::InterruptedBySignal;
return BlockResult::WokeNormally;
}
[[nodiscard]] BlockResult block_until(const char* state_string, Function<bool()>&& condition)
{
return block<ConditionBlocker>(nullptr, state_string, move(condition));
}
BlockResult wait_on(WaitQueue& queue, const char* reason, timeval* timeout = nullptr, Atomic<bool>* lock = nullptr, RefPtr<Thread> beneficiary = {});
void wake_from_queue();
void unblock();
// Tell this thread to unblock if needed,
// gracefully unwind the stack and die.
void set_should_die();
bool should_die() const { return m_should_die; }
void die_if_needed();
bool tick();
void set_ticks_left(u32 t) { m_ticks_left = t; }
u32 ticks_left() const { return m_ticks_left; }
u32 kernel_stack_base() const { return m_kernel_stack_base; }
u32 kernel_stack_top() const { return m_kernel_stack_top; }
void set_state(State);
bool is_initialized() const { return m_initialized; }
void set_initialized(bool initialized) { m_initialized = initialized; }
void send_urgent_signal_to_self(u8 signal);
void send_signal(u8 signal, Process* sender);
void consider_unblock(time_t now_sec, long now_usec);
u32 update_signal_mask(u32 signal_mask);
u32 signal_mask_block(sigset_t signal_set, bool block);
u32 signal_mask() const;
void clear_signals();
void set_dump_backtrace_on_finalization() { m_dump_backtrace_on_finalization = true; }
ShouldUnblockThread dispatch_one_pending_signal();
ShouldUnblockThread dispatch_signal(u8 signal);
bool has_unmasked_pending_signals() const { return m_have_any_unmasked_pending_signals.load(AK::memory_order_consume); }
void terminate_due_to_signal(u8 signal);
bool should_ignore_signal(u8 signal) const;
bool has_signal_handler(u8 signal) const;
bool has_pending_signal(u8 signal) const;
u32 pending_signals() const;
FPUState& fpu_state() { return *m_fpu_state; }
void set_default_signal_dispositions();
bool push_value_on_stack(FlatPtr);
KResultOr<u32> make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment, Vector<AuxiliaryValue>);
KResult make_thread_specific_region(Badge<Process>);
unsigned syscall_count() const { return m_syscall_count; }
void did_syscall() { ++m_syscall_count; }
unsigned inode_faults() const { return m_inode_faults; }
void did_inode_fault() { ++m_inode_faults; }
unsigned zero_faults() const { return m_zero_faults; }
void did_zero_fault() { ++m_zero_faults; }
unsigned cow_faults() const { return m_cow_faults; }
void did_cow_fault() { ++m_cow_faults; }
unsigned file_read_bytes() const { return m_file_read_bytes; }
unsigned file_write_bytes() const { return m_file_write_bytes; }
void did_file_read(unsigned bytes)
{
m_file_read_bytes += bytes;
}
void did_file_write(unsigned bytes)
{
m_file_write_bytes += bytes;
}
unsigned unix_socket_read_bytes() const { return m_unix_socket_read_bytes; }
unsigned unix_socket_write_bytes() const { return m_unix_socket_write_bytes; }
void did_unix_socket_read(unsigned bytes)
{
m_unix_socket_read_bytes += bytes;
}
void did_unix_socket_write(unsigned bytes)
{
m_unix_socket_write_bytes += bytes;
}
unsigned ipv4_socket_read_bytes() const { return m_ipv4_socket_read_bytes; }
unsigned ipv4_socket_write_bytes() const { return m_ipv4_socket_write_bytes; }
void did_ipv4_socket_read(unsigned bytes)
{
m_ipv4_socket_read_bytes += bytes;
}
void did_ipv4_socket_write(unsigned bytes)
{
m_ipv4_socket_write_bytes += bytes;
}
const char* wait_reason() const
{
return m_wait_reason;
}
void set_active(bool active)
{
m_is_active.store(active, AK::memory_order_release);
}
bool is_finalizable() const
{
// We can't finalize as long as this thread is still running
// Note that checking for Running state here isn't sufficient
// as the thread may not be in Running state but switching out.
// m_is_active is set to false once the context switch is
// complete and the thread is not executing on any processor.
if (m_is_active.load(AK::memory_order_consume))
return false;
// We can't finalize until the thread is either detached or
// a join has started. We can't make m_is_joinable atomic
// because that would introduce a race in try_join.
ScopedSpinLock lock(m_lock);
return !m_is_joinable;
}
RefPtr<Thread> clone(Process&);
template<typename Callback>
static IterationDecision for_each_in_state(State, Callback);
template<typename Callback>
static IterationDecision for_each_living(Callback);
template<typename Callback>
static IterationDecision for_each(Callback);
static bool is_runnable_state(Thread::State state)
{
return state == Thread::State::Running || state == Thread::State::Runnable;
}
static constexpr u32 default_kernel_stack_size = 65536;
static constexpr u32 default_userspace_stack_size = 4 * MiB;
ThreadTracer* tracer() { return m_tracer.ptr(); }
void start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(const RegisterState&);
RecursiveSpinLock& get_lock() const { return m_lock; }
private:
IntrusiveListNode m_runnable_list_node;
IntrusiveListNode m_wait_queue_node;
private:
friend struct SchedulerData;
friend class WaitQueue;
bool unlock_process_if_locked();
void relock_process(bool did_unlock);
String backtrace_impl();
void reset_fpu_state();
mutable RecursiveSpinLock m_lock;
NonnullRefPtr<Process> m_process;
ThreadID m_tid { -1 };
TSS32 m_tss;
Atomic<u32> m_cpu { 0 };
u32 m_cpu_affinity { THREAD_AFFINITY_DEFAULT };
u32 m_ticks { 0 };
u32 m_ticks_left { 0 };
u32 m_times_scheduled { 0 };
u32 m_pending_signals { 0 };
u32 m_signal_mask { 0 };
u32 m_kernel_stack_base { 0 };
u32 m_kernel_stack_top { 0 };
OwnPtr<Region> m_kernel_stack_region;
VirtualAddress m_thread_specific_data;
size_t m_thread_specific_region_size { 0 };
SignalActionData m_signal_action_data[32];
Blocker* m_blocker { nullptr };
timespec* m_blocker_timeout { nullptr };
const char* m_wait_reason { nullptr };
WaitQueue* m_queue { nullptr };
Atomic<bool> m_is_active { false };
bool m_is_joinable { true };
Atomic<Thread*> m_joiner { nullptr };
void* m_exit_value { nullptr };
unsigned m_syscall_count { 0 };
unsigned m_inode_faults { 0 };
unsigned m_zero_faults { 0 };
unsigned m_cow_faults { 0 };
unsigned m_file_read_bytes { 0 };
unsigned m_file_write_bytes { 0 };
unsigned m_unix_socket_read_bytes { 0 };
unsigned m_unix_socket_write_bytes { 0 };
unsigned m_ipv4_socket_read_bytes { 0 };
unsigned m_ipv4_socket_write_bytes { 0 };
FPUState* m_fpu_state { nullptr };
State m_state { Invalid };
String m_name;
u32 m_priority { THREAD_PRIORITY_NORMAL };
u32 m_extra_priority { 0 };
u32 m_priority_boost { 0 };
u8 m_stop_signal { 0 };
State m_stop_state { Invalid };
bool m_dump_backtrace_on_finalization { false };
bool m_should_die { false };
bool m_initialized { false };
Atomic<bool> m_have_any_unmasked_pending_signals { false };
OwnPtr<ThreadTracer> m_tracer;
void yield_without_holding_big_lock();
void update_state_for_thread(Thread::State previous_state);
};
template<typename Callback>
inline IterationDecision Thread::for_each_living(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
return Thread::for_each([callback](Thread& thread) -> IterationDecision {
if (thread.state() != Thread::State::Dead && thread.state() != Thread::State::Dying)
return callback(thread);
return IterationDecision::Continue;
});
}
template<typename Callback>
inline IterationDecision Thread::for_each(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_scheduler_lock);
auto ret = Scheduler::for_each_runnable(callback);
if (ret == IterationDecision::Break)
return ret;
return Scheduler::for_each_nonrunnable(callback);
}
template<typename Callback>
inline IterationDecision Thread::for_each_in_state(State state, Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_scheduler_lock);
auto new_callback = [=](Thread& thread) -> IterationDecision {
if (thread.state() == state)
return callback(thread);
return IterationDecision::Continue;
};
if (is_runnable_state(state))
return Scheduler::for_each_runnable(new_callback);
return Scheduler::for_each_nonrunnable(new_callback);
}
const LogStream& operator<<(const LogStream&, const Thread&);
struct SchedulerData {
typedef IntrusiveList<Thread, &Thread::m_runnable_list_node> ThreadList;
ThreadList m_runnable_threads;
ThreadList m_nonrunnable_threads;
bool has_thread(Thread& thread) const
{
return m_runnable_threads.contains(thread) || m_nonrunnable_threads.contains(thread);
}
ThreadList& thread_list_for_state(Thread::State state)
{
if (Thread::is_runnable_state(state))
return m_runnable_threads;
return m_nonrunnable_threads;
}
};
template<typename Callback>
inline IterationDecision Scheduler::for_each_runnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.own_lock());
auto& tl = g_scheduler_data->m_runnable_threads;
for (auto it = tl.begin(); it != tl.end();) {
auto& thread = *it;
it = ++it;
if (callback(thread) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
inline IterationDecision Scheduler::for_each_nonrunnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.own_lock());
auto& tl = g_scheduler_data->m_nonrunnable_threads;
for (auto it = tl.begin(); it != tl.end();) {
auto& thread = *it;
it = ++it;
if (callback(thread) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
}