ladybird/Libraries/LibWeb/TreeNode.h
Andreas Kling 56ca91b9f8 LibWeb: Implement <script src> support for synchronous scripts
Scripts loaded in this way will block the parser until they finish
executing. This means that they see the DOM before the whole document
has been fully parsed. This is all normal, of course.

To make this work, I changed the way we notify DOM nodes about tree
insertion. The inserted_into() callbacks are now incrementally invoked
during parse, as each node is appended to its parent.

To accomodate inline scripts and inline style sheets, we now also have
a children_changed() callback which is invoked on any parent when it
has children added/removed.
2020-04-03 23:06:09 +02:00

302 lines
9.4 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/NonnullRefPtr.h>
#include <AK/Weakable.h>
namespace Web {
// FIXME: I wish I didn't have to forward declare these, but I can't seem to avoid
// it if I still want to have for_each_in_subtree_of_type<U> inline here.
class Node;
class LayoutNode;
template<typename T>
bool is(const Node&);
template<typename T>
bool is(const LayoutNode&);
template<typename T>
class TreeNode : public Weakable<T> {
public:
void ref()
{
ASSERT(m_ref_count);
++m_ref_count;
}
void unref()
{
ASSERT(m_ref_count);
if (!--m_ref_count) {
if (m_next_sibling)
m_next_sibling->m_previous_sibling = m_previous_sibling;
if (m_previous_sibling)
m_previous_sibling->m_next_sibling = m_next_sibling;
T* next_child;
for (auto* child = m_first_child; child; child = next_child) {
next_child = child->m_next_sibling;
child->m_parent = nullptr;
child->unref();
}
delete static_cast<T*>(this);
}
}
int ref_count() const { return m_ref_count; }
T* parent() { return m_parent; }
const T* parent() const { return m_parent; }
bool has_children() const { return m_first_child; }
T* next_sibling() { return m_next_sibling; }
T* previous_sibling() { return m_previous_sibling; }
T* first_child() { return m_first_child; }
T* last_child() { return m_last_child; }
const T* next_sibling() const { return m_next_sibling; }
const T* previous_sibling() const { return m_previous_sibling; }
const T* first_child() const { return m_first_child; }
const T* last_child() const { return m_last_child; }
int child_count() const
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling())
++count;
return count;
}
T* child_at_index(int index)
{
int count = 0;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (count == index)
return child;
++count;
}
return nullptr;
}
const T* child_at_index(int index) const
{
return const_cast<TreeNode*>(this)->child_at_index(index);
}
bool is_ancestor_of(const TreeNode&) const;
void prepend_child(NonnullRefPtr<T> node);
void append_child(NonnullRefPtr<T> node);
NonnullRefPtr<T> remove_child(NonnullRefPtr<T> node);
void donate_all_children_to(T& node);
bool is_child_allowed(const T&) const { return true; }
T* next_in_pre_order()
{
if (first_child())
return first_child();
T* node;
if (!(node = next_sibling())) {
node = parent();
while (node && !node->next_sibling())
node = node->parent();
if (node)
node = node->next_sibling();
}
return node;
}
const T* next_in_pre_order() const
{
return const_cast<TreeNode*>(this)->next_in_pre_order();
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback) const
{
if (callback(static_cast<const T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
IterationDecision for_each_in_subtree(Callback callback)
{
if (callback(static_cast<T&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->for_each_in_subtree(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback)
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename U, typename Callback>
IterationDecision for_each_in_subtree_of_type(Callback callback) const
{
if (is<U>(static_cast<const T&>(*this))) {
if (callback(static_cast<const U&>(*this)) == IterationDecision::Break)
return IterationDecision::Break;
}
for (auto* child = first_child(); child; child = child->next_sibling()) {
if (child->template for_each_in_subtree_of_type<U>(callback) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
protected:
TreeNode() {}
private:
int m_ref_count { 1 };
T* m_parent { nullptr };
T* m_first_child { nullptr };
T* m_last_child { nullptr };
T* m_next_sibling { nullptr };
T* m_previous_sibling { nullptr };
};
template<typename T>
inline NonnullRefPtr<T> TreeNode<T>::remove_child(NonnullRefPtr<T> node)
{
ASSERT(node->m_parent == this);
if (m_first_child == node)
m_first_child = node->m_next_sibling;
if (m_last_child == node)
m_last_child = node->m_previous_sibling;
if (node->m_next_sibling)
node->m_next_sibling->m_previous_sibling = node->m_previous_sibling;
if (node->m_previous_sibling)
node->m_previous_sibling->m_next_sibling = node->m_next_sibling;
node->m_next_sibling = nullptr;
node->m_previous_sibling = nullptr;
node->m_parent = nullptr;
node->removed_from(static_cast<T&>(*this));
node->unref();
static_cast<T*>(this)->children_changed();
return node;
}
template<typename T>
inline void TreeNode<T>::append_child(NonnullRefPtr<T> node)
{
ASSERT(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_last_child)
m_last_child->m_next_sibling = node.ptr();
node->m_previous_sibling = m_last_child;
node->m_parent = static_cast<T*>(this);
m_last_child = node.ptr();
if (!m_first_child)
m_first_child = m_last_child;
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline void TreeNode<T>::prepend_child(NonnullRefPtr<T> node)
{
ASSERT(!node->m_parent);
if (!static_cast<T*>(this)->is_child_allowed(*node))
return;
if (m_first_child)
m_first_child->m_previous_sibling = node.ptr();
node->m_next_sibling = m_first_child;
node->m_parent = static_cast<T*>(this);
m_first_child = node.ptr();
if (!m_last_child)
m_last_child = m_first_child;
node->inserted_into(static_cast<T&>(*this));
(void)node.leak_ref();
static_cast<T*>(this)->children_changed();
}
template<typename T>
inline void TreeNode<T>::donate_all_children_to(T& node)
{
for (T* child = m_first_child; child != nullptr;) {
T* next_child = child->m_next_sibling;
child->m_parent = nullptr;
child->m_next_sibling = nullptr;
child->m_previous_sibling = nullptr;
node.append_child(adopt(*child));
child = next_child;
}
m_first_child = nullptr;
m_last_child = nullptr;
}
template<typename T>
inline bool TreeNode<T>::is_ancestor_of(const TreeNode<T>& other) const
{
for (auto* ancestor = other.parent(); ancestor; ancestor = ancestor->parent()) {
if (ancestor == this)
return true;
}
return false;
}
}