ladybird/Libraries/LibJS/Parser.cpp

1861 lines
70 KiB
C++

/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@gmx.de>
* Copyright (c) 2020, Linus Groh <mail@linusgroh.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "Parser.h"
#include <AK/ScopeGuard.h>
#include <AK/StdLibExtras.h>
#include <AK/TemporaryChange.h>
#include <ctype.h>
namespace JS {
class ScopePusher {
public:
enum Type {
Var = 1,
Let = 2,
Function = 3,
};
ScopePusher(Parser& parser, unsigned mask)
: m_parser(parser)
, m_mask(mask)
{
if (m_mask & Var)
m_parser.m_parser_state.m_var_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
if (m_mask & Let)
m_parser.m_parser_state.m_let_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
if (m_mask & Function)
m_parser.m_parser_state.m_function_scopes.append(NonnullRefPtrVector<FunctionDeclaration>());
}
~ScopePusher()
{
if (m_mask & Var)
m_parser.m_parser_state.m_var_scopes.take_last();
if (m_mask & Let)
m_parser.m_parser_state.m_let_scopes.take_last();
if (m_mask & Function)
m_parser.m_parser_state.m_function_scopes.take_last();
}
Parser& m_parser;
unsigned m_mask { 0 };
};
class OperatorPrecedenceTable {
public:
constexpr OperatorPrecedenceTable()
: m_token_precedence()
{
for (size_t i = 0; i < array_size(m_operator_precedence); ++i) {
auto& op = m_operator_precedence[i];
m_token_precedence[static_cast<size_t>(op.token)] = op.precedence;
}
}
constexpr int get(TokenType token) const
{
int p = m_token_precedence[static_cast<size_t>(token)];
if (p == 0) {
fprintf(stderr, "Internal Error: No precedence for operator %s\n", Token::name(token));
ASSERT_NOT_REACHED();
return -1;
}
return p;
}
private:
int m_token_precedence[cs_num_of_js_tokens];
struct OperatorPrecedence {
TokenType token;
int precedence;
};
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
static constexpr const OperatorPrecedence m_operator_precedence[] = {
{ TokenType::Period, 20 },
{ TokenType::BracketOpen, 20 },
{ TokenType::ParenOpen, 20 },
{ TokenType::QuestionMarkPeriod, 20 },
{ TokenType::New, 19 },
{ TokenType::PlusPlus, 18 },
{ TokenType::MinusMinus, 18 },
{ TokenType::ExclamationMark, 17 },
{ TokenType::Tilde, 17 },
{ TokenType::Typeof, 17 },
{ TokenType::Void, 17 },
{ TokenType::Delete, 17 },
{ TokenType::Await, 17 },
{ TokenType::DoubleAsterisk, 16 },
{ TokenType::Asterisk, 15 },
{ TokenType::Slash, 15 },
{ TokenType::Percent, 15 },
{ TokenType::Plus, 14 },
{ TokenType::Minus, 14 },
{ TokenType::ShiftLeft, 13 },
{ TokenType::ShiftRight, 13 },
{ TokenType::UnsignedShiftRight, 13 },
{ TokenType::LessThan, 12 },
{ TokenType::LessThanEquals, 12 },
{ TokenType::GreaterThan, 12 },
{ TokenType::GreaterThanEquals, 12 },
{ TokenType::In, 12 },
{ TokenType::Instanceof, 12 },
{ TokenType::EqualsEquals, 11 },
{ TokenType::ExclamationMarkEquals, 11 },
{ TokenType::EqualsEqualsEquals, 11 },
{ TokenType::ExclamationMarkEqualsEquals, 11 },
{ TokenType::Ampersand, 10 },
{ TokenType::Caret, 9 },
{ TokenType::Pipe, 8 },
{ TokenType::DoubleQuestionMark, 7 },
{ TokenType::DoubleAmpersand, 6 },
{ TokenType::DoublePipe, 5 },
{ TokenType::QuestionMark, 4 },
{ TokenType::Equals, 3 },
{ TokenType::PlusEquals, 3 },
{ TokenType::MinusEquals, 3 },
{ TokenType::DoubleAsteriskEquals, 3 },
{ TokenType::AsteriskEquals, 3 },
{ TokenType::SlashEquals, 3 },
{ TokenType::PercentEquals, 3 },
{ TokenType::ShiftLeftEquals, 3 },
{ TokenType::ShiftRightEquals, 3 },
{ TokenType::UnsignedShiftRightEquals, 3 },
{ TokenType::AmpersandEquals, 3 },
{ TokenType::CaretEquals, 3 },
{ TokenType::PipeEquals, 3 },
{ TokenType::DoubleAmpersandEquals, 3 },
{ TokenType::DoublePipeEquals, 3 },
{ TokenType::DoubleQuestionMarkEquals, 3 },
{ TokenType::Yield, 2 },
{ TokenType::Comma, 1 },
};
};
constexpr OperatorPrecedenceTable g_operator_precedence;
Parser::ParserState::ParserState(Lexer lexer)
: m_lexer(move(lexer))
, m_current_token(m_lexer.next())
{
}
Parser::Parser(Lexer lexer)
: m_parser_state(move(lexer))
{
}
Associativity Parser::operator_associativity(TokenType type) const
{
switch (type) {
case TokenType::Period:
case TokenType::BracketOpen:
case TokenType::ParenOpen:
case TokenType::QuestionMarkPeriod:
case TokenType::Asterisk:
case TokenType::Slash:
case TokenType::Percent:
case TokenType::Plus:
case TokenType::Minus:
case TokenType::ShiftLeft:
case TokenType::ShiftRight:
case TokenType::UnsignedShiftRight:
case TokenType::LessThan:
case TokenType::LessThanEquals:
case TokenType::GreaterThan:
case TokenType::GreaterThanEquals:
case TokenType::In:
case TokenType::Instanceof:
case TokenType::EqualsEquals:
case TokenType::ExclamationMarkEquals:
case TokenType::EqualsEqualsEquals:
case TokenType::ExclamationMarkEqualsEquals:
case TokenType::Typeof:
case TokenType::Void:
case TokenType::Delete:
case TokenType::Ampersand:
case TokenType::Caret:
case TokenType::Pipe:
case TokenType::DoubleQuestionMark:
case TokenType::DoubleAmpersand:
case TokenType::DoublePipe:
case TokenType::Comma:
return Associativity::Left;
default:
return Associativity::Right;
}
}
NonnullRefPtr<Program> Parser::parse_program()
{
ScopePusher scope(*this, ScopePusher::Var | ScopePusher::Let | ScopePusher::Function);
auto program = adopt(*new Program);
bool first = true;
m_parser_state.m_use_strict_directive = UseStrictDirectiveState::Looking;
while (!done()) {
if (match_statement()) {
program->append(parse_statement());
if (first) {
if (m_parser_state.m_use_strict_directive == UseStrictDirectiveState::Found) {
program->set_strict_mode();
m_parser_state.m_strict_mode = true;
}
first = false;
m_parser_state.m_use_strict_directive = UseStrictDirectiveState::None;
}
} else {
expected("statement");
consume();
}
}
if (m_parser_state.m_var_scopes.size() == 1) {
program->add_variables(m_parser_state.m_var_scopes.last());
program->add_variables(m_parser_state.m_let_scopes.last());
program->add_functions(m_parser_state.m_function_scopes.last());
} else {
syntax_error("Unclosed scope");
}
return program;
}
NonnullRefPtr<Statement> Parser::parse_statement()
{
switch (m_parser_state.m_current_token.type()) {
case TokenType::Class:
return parse_class_declaration();
case TokenType::Function: {
auto declaration = parse_function_node<FunctionDeclaration>();
m_parser_state.m_function_scopes.last().append(declaration);
return declaration;
}
case TokenType::CurlyOpen:
return parse_block_statement();
case TokenType::Return:
return parse_return_statement();
case TokenType::Var:
case TokenType::Let:
case TokenType::Const:
return parse_variable_declaration();
case TokenType::For:
return parse_for_statement();
case TokenType::If:
return parse_if_statement();
case TokenType::Throw:
return parse_throw_statement();
case TokenType::Try:
return parse_try_statement();
case TokenType::Break:
return parse_break_statement();
case TokenType::Continue:
return parse_continue_statement();
case TokenType::Switch:
return parse_switch_statement();
case TokenType::Do:
return parse_do_while_statement();
case TokenType::While:
return parse_while_statement();
case TokenType::Debugger:
return parse_debugger_statement();
case TokenType::Semicolon:
consume();
return create_ast_node<EmptyStatement>();
default:
if (match(TokenType::Identifier)) {
auto result = try_parse_labelled_statement();
if (!result.is_null())
return result.release_nonnull();
}
if (match_expression()) {
auto expr = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ExpressionStatement>(move(expr));
}
expected("statement (missing switch case)");
consume();
return create_ast_node<ErrorStatement>();
}
}
RefPtr<FunctionExpression> Parser::try_parse_arrow_function_expression(bool expect_parens)
{
save_state();
m_parser_state.m_var_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
ArmedScopeGuard state_rollback_guard = [&] {
m_parser_state.m_var_scopes.take_last();
load_state();
};
Vector<FunctionNode::Parameter> parameters;
i32 function_length = -1;
if (expect_parens) {
// We have parens around the function parameters and can re-use the same parsing
// logic used for regular functions: multiple parameters, default values, rest
// parameter, maybe a trailing comma. If we have a new syntax error afterwards we
// know parsing failed and rollback the parser state.
auto previous_syntax_errors = m_parser_state.m_errors.size();
parameters = parse_function_parameters(function_length);
if (m_parser_state.m_errors.size() > previous_syntax_errors)
return nullptr;
if (!match(TokenType::ParenClose))
return nullptr;
consume();
} else {
// No parens - this must be an identifier followed by arrow. That's it.
if (!match(TokenType::Identifier))
return nullptr;
parameters.append({ consume().value(), {} });
}
// If there's a newline between the closing paren and arrow it's not a valid arrow function,
// ASI should kick in instead (it'll then fail with "Unexpected token Arrow")
if (m_parser_state.m_current_token.trivia().contains('\n'))
return nullptr;
if (!match(TokenType::Arrow))
return nullptr;
consume();
if (function_length == -1)
function_length = parameters.size();
auto old_labels_in_scope = move(m_parser_state.m_labels_in_scope);
ScopeGuard guard([&]() {
m_parser_state.m_labels_in_scope = move(old_labels_in_scope);
});
bool is_strict = false;
auto function_body_result = [&]() -> RefPtr<BlockStatement> {
TemporaryChange change(m_parser_state.m_in_function_context, true);
if (match(TokenType::CurlyOpen)) {
// Parse a function body with statements
return parse_block_statement(is_strict);
}
if (match_expression()) {
// Parse a function body which returns a single expression
// FIXME: We synthesize a block with a return statement
// for arrow function bodies which are a single expression.
// Esprima generates a single "ArrowFunctionExpression"
// with a "body" property.
auto return_expression = parse_expression(2);
auto return_block = create_ast_node<BlockStatement>();
return_block->append<ReturnStatement>(move(return_expression));
return return_block;
}
// Invalid arrow function body
return nullptr;
}();
if (!function_body_result.is_null()) {
state_rollback_guard.disarm();
auto body = function_body_result.release_nonnull();
return create_ast_node<FunctionExpression>("", move(body), move(parameters), function_length, m_parser_state.m_var_scopes.take_last(), is_strict, true);
}
return nullptr;
}
RefPtr<Statement> Parser::try_parse_labelled_statement()
{
save_state();
ArmedScopeGuard state_rollback_guard = [&] {
load_state();
};
auto identifier = consume(TokenType::Identifier).value();
if (!match(TokenType::Colon))
return {};
consume(TokenType::Colon);
if (!match_statement())
return {};
m_parser_state.m_labels_in_scope.set(identifier);
auto statement = parse_statement();
m_parser_state.m_labels_in_scope.remove(identifier);
statement->set_label(identifier);
state_rollback_guard.disarm();
return statement;
}
NonnullRefPtr<ClassDeclaration> Parser::parse_class_declaration()
{
return create_ast_node<ClassDeclaration>(parse_class_expression(true));
}
NonnullRefPtr<ClassExpression> Parser::parse_class_expression(bool expect_class_name)
{
// Classes are always in strict mode.
TemporaryChange strict_mode_rollback(m_parser_state.m_strict_mode, true);
consume(TokenType::Class);
NonnullRefPtrVector<ClassMethod> methods;
RefPtr<Expression> super_class;
RefPtr<FunctionExpression> constructor;
String class_name = expect_class_name || match(TokenType::Identifier) ? consume(TokenType::Identifier).value().to_string() : "";
if (match(TokenType::Extends)) {
consume();
super_class = parse_primary_expression();
}
consume(TokenType::CurlyOpen);
while (!done() && !match(TokenType::CurlyClose)) {
RefPtr<Expression> property_key;
bool is_static = false;
bool is_constructor = false;
auto method_kind = ClassMethod::Kind::Method;
if (match(TokenType::Semicolon)) {
consume();
continue;
}
if (match_property_key()) {
StringView name;
if (match(TokenType::Identifier) && m_parser_state.m_current_token.value() == "static") {
consume();
is_static = true;
}
if (match(TokenType::Identifier)) {
auto identifier_name = m_parser_state.m_current_token.value();
if (identifier_name == "get") {
method_kind = ClassMethod::Kind::Getter;
consume();
} else if (identifier_name == "set") {
method_kind = ClassMethod::Kind::Setter;
consume();
}
}
if (match_property_key()) {
switch (m_parser_state.m_current_token.type()) {
case TokenType::Identifier:
name = consume().value();
property_key = create_ast_node<StringLiteral>(name);
break;
case TokenType::StringLiteral: {
auto string_literal = parse_string_literal(consume());
name = string_literal->value();
property_key = move(string_literal);
break;
}
default:
property_key = parse_property_key();
break;
}
} else {
expected("property key");
}
// Constructor may be a StringLiteral or an Identifier.
if (!is_static && name == "constructor") {
if (method_kind != ClassMethod::Kind::Method)
syntax_error("Class constructor may not be an accessor");
if (!constructor.is_null())
syntax_error("Classes may not have more than one constructor");
is_constructor = true;
}
}
if (match(TokenType::ParenOpen)) {
u8 parse_options = FunctionNodeParseOptions::AllowSuperPropertyLookup;
if (!super_class.is_null())
parse_options |= FunctionNodeParseOptions::AllowSuperConstructorCall;
if (method_kind == ClassMethod::Kind::Getter)
parse_options |= FunctionNodeParseOptions::IsGetterFunction;
if (method_kind == ClassMethod::Kind::Setter)
parse_options |= FunctionNodeParseOptions::IsSetterFunction;
auto function = parse_function_node<FunctionExpression>(parse_options);
if (is_constructor) {
constructor = move(function);
} else if (!property_key.is_null()) {
methods.append(create_ast_node<ClassMethod>(property_key.release_nonnull(), move(function), method_kind, is_static));
} else {
syntax_error("No key for class method");
}
} else {
expected("ParenOpen");
consume();
}
}
consume(TokenType::CurlyClose);
if (constructor.is_null()) {
auto constructor_body = create_ast_node<BlockStatement>();
if (!super_class.is_null()) {
// Set constructor to the result of parsing the source text
// constructor(... args){ super (...args);}
auto super_call = create_ast_node<CallExpression>(create_ast_node<SuperExpression>(), Vector { CallExpression::Argument { create_ast_node<Identifier>("args"), true } });
constructor_body->append(create_ast_node<ExpressionStatement>(move(super_call)));
constructor_body->add_variables(m_parser_state.m_var_scopes.last());
constructor = create_ast_node<FunctionExpression>(class_name, move(constructor_body), Vector { FunctionNode::Parameter { "args", nullptr, true } }, 0, NonnullRefPtrVector<VariableDeclaration>(), true);
} else {
constructor = create_ast_node<FunctionExpression>(class_name, move(constructor_body), Vector<FunctionNode::Parameter> {}, 0, NonnullRefPtrVector<VariableDeclaration>(), true);
}
}
return create_ast_node<ClassExpression>(move(class_name), move(constructor), move(super_class), move(methods));
}
NonnullRefPtr<Expression> Parser::parse_primary_expression()
{
if (match_unary_prefixed_expression())
return parse_unary_prefixed_expression();
switch (m_parser_state.m_current_token.type()) {
case TokenType::ParenOpen: {
consume(TokenType::ParenOpen);
if (match(TokenType::ParenClose) || match(TokenType::Identifier) || match(TokenType::TripleDot)) {
auto arrow_function_result = try_parse_arrow_function_expression(true);
if (!arrow_function_result.is_null()) {
return arrow_function_result.release_nonnull();
}
}
auto expression = parse_expression(0);
consume(TokenType::ParenClose);
return expression;
}
case TokenType::This:
consume();
return create_ast_node<ThisExpression>();
case TokenType::Class:
return parse_class_expression(false);
case TokenType::Super:
consume();
if (!m_parser_state.m_allow_super_property_lookup)
syntax_error("'super' keyword unexpected here");
return create_ast_node<SuperExpression>();
case TokenType::Identifier: {
auto arrow_function_result = try_parse_arrow_function_expression(false);
if (!arrow_function_result.is_null()) {
return arrow_function_result.release_nonnull();
}
return create_ast_node<Identifier>(consume().value());
}
case TokenType::NumericLiteral:
return create_ast_node<NumericLiteral>(consume_and_validate_numeric_literal().double_value());
case TokenType::BigIntLiteral:
return create_ast_node<BigIntLiteral>(consume().value());
case TokenType::BoolLiteral:
return create_ast_node<BooleanLiteral>(consume().bool_value());
case TokenType::StringLiteral:
return parse_string_literal(consume());
case TokenType::NullLiteral:
consume();
return create_ast_node<NullLiteral>();
case TokenType::CurlyOpen:
return parse_object_expression();
case TokenType::Function:
return parse_function_node<FunctionExpression>();
case TokenType::BracketOpen:
return parse_array_expression();
case TokenType::RegexLiteral:
return parse_regexp_literal();
case TokenType::TemplateLiteralStart:
return parse_template_literal(false);
case TokenType::New:
return parse_new_expression();
default:
expected("primary expression (missing switch case)");
consume();
return create_ast_node<ErrorExpression>();
}
}
NonnullRefPtr<RegExpLiteral> Parser::parse_regexp_literal()
{
auto content = consume().value();
auto flags = match(TokenType::RegexFlags) ? consume().value() : "";
return create_ast_node<RegExpLiteral>(content.substring_view(1, content.length() - 2), flags);
}
NonnullRefPtr<Expression> Parser::parse_unary_prefixed_expression()
{
auto precedence = g_operator_precedence.get(m_parser_state.m_current_token.type());
auto associativity = operator_associativity(m_parser_state.m_current_token.type());
switch (m_parser_state.m_current_token.type()) {
case TokenType::PlusPlus: {
consume();
auto rhs_start_line = m_parser_state.m_current_token.line_number();
auto rhs_start_column = m_parser_state.m_current_token.line_column();
auto rhs = parse_expression(precedence, associativity);
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for ++foo()
if (!rhs->is_identifier() && !rhs->is_member_expression())
syntax_error(String::formatted("Right-hand side of prefix increment operator must be identifier or member expression, got {}", rhs->class_name()), rhs_start_line, rhs_start_column);
return create_ast_node<UpdateExpression>(UpdateOp::Increment, move(rhs), true);
}
case TokenType::MinusMinus: {
consume();
auto rhs_start_line = m_parser_state.m_current_token.line_number();
auto rhs_start_column = m_parser_state.m_current_token.line_column();
auto rhs = parse_expression(precedence, associativity);
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for --foo()
if (!rhs->is_identifier() && !rhs->is_member_expression())
syntax_error(String::formatted("Right-hand side of prefix decrement operator must be identifier or member expression, got {}", rhs->class_name()), rhs_start_line, rhs_start_column);
return create_ast_node<UpdateExpression>(UpdateOp::Decrement, move(rhs), true);
}
case TokenType::ExclamationMark:
consume();
return create_ast_node<UnaryExpression>(UnaryOp::Not, parse_expression(precedence, associativity));
case TokenType::Tilde:
consume();
return create_ast_node<UnaryExpression>(UnaryOp::BitwiseNot, parse_expression(precedence, associativity));
case TokenType::Plus:
consume();
return create_ast_node<UnaryExpression>(UnaryOp::Plus, parse_expression(precedence, associativity));
case TokenType::Minus:
consume();
return create_ast_node<UnaryExpression>(UnaryOp::Minus, parse_expression(precedence, associativity));
case TokenType::Typeof:
consume();
return create_ast_node<UnaryExpression>(UnaryOp::Typeof, parse_expression(precedence, associativity));
case TokenType::Void:
consume();
return create_ast_node<UnaryExpression>(UnaryOp::Void, parse_expression(precedence, associativity));
case TokenType::Delete:
consume();
return create_ast_node<UnaryExpression>(UnaryOp::Delete, parse_expression(precedence, associativity));
default:
expected("primary expression (missing switch case)");
consume();
return create_ast_node<ErrorExpression>();
}
}
NonnullRefPtr<Expression> Parser::parse_property_key()
{
if (match(TokenType::StringLiteral)) {
return parse_string_literal(consume());
} else if (match(TokenType::NumericLiteral)) {
// FIXME: "evaluate" key to double value, see https://github.com/SerenityOS/serenity/issues/3717
return create_ast_node<StringLiteral>(consume_and_validate_numeric_literal().value());
} else if (match(TokenType::BigIntLiteral)) {
auto value = consume(TokenType::BigIntLiteral).value();
return create_ast_node<StringLiteral>(value.substring_view(0, value.length() - 1));
} else if (match(TokenType::BracketOpen)) {
consume(TokenType::BracketOpen);
auto result = parse_expression(0);
consume(TokenType::BracketClose);
return result;
} else {
if (!match_identifier_name())
expected("IdentifierName");
return create_ast_node<StringLiteral>(consume().value());
}
}
NonnullRefPtr<ObjectExpression> Parser::parse_object_expression()
{
consume(TokenType::CurlyOpen);
NonnullRefPtrVector<ObjectProperty> properties;
ObjectProperty::Type property_type;
auto skip_to_next_property = [&] {
while (!done() && !match(TokenType::Comma) && !match(TokenType::CurlyOpen))
consume();
};
while (!done() && !match(TokenType::CurlyClose)) {
property_type = ObjectProperty::Type::KeyValue;
RefPtr<Expression> property_name;
RefPtr<Expression> property_value;
if (match(TokenType::TripleDot)) {
consume();
property_name = parse_expression(4);
properties.append(create_ast_node<ObjectProperty>(*property_name, nullptr, ObjectProperty::Type::Spread, false));
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
continue;
}
if (match(TokenType::Identifier)) {
auto identifier = consume().value();
if (identifier == "get" && match_property_key()) {
property_type = ObjectProperty::Type::Getter;
property_name = parse_property_key();
} else if (identifier == "set" && match_property_key()) {
property_type = ObjectProperty::Type::Setter;
property_name = parse_property_key();
} else {
property_name = create_ast_node<StringLiteral>(identifier);
property_value = create_ast_node<Identifier>(identifier);
}
} else {
property_name = parse_property_key();
}
if (property_type == ObjectProperty::Type::Getter || property_type == ObjectProperty::Type::Setter) {
if (!match(TokenType::ParenOpen)) {
syntax_error(
"Expected '(' for object getter or setter property",
m_parser_state.m_current_token.line_number(),
m_parser_state.m_current_token.line_column());
skip_to_next_property();
continue;
}
}
if (match(TokenType::ParenOpen)) {
ASSERT(property_name);
u8 parse_options = FunctionNodeParseOptions::AllowSuperPropertyLookup;
if (property_type == ObjectProperty::Type::Getter)
parse_options |= FunctionNodeParseOptions::IsGetterFunction;
if (property_type == ObjectProperty::Type::Setter)
parse_options |= FunctionNodeParseOptions::IsSetterFunction;
auto function = parse_function_node<FunctionExpression>(parse_options);
properties.append(create_ast_node<ObjectProperty>(*property_name, function, property_type, true));
} else if (match(TokenType::Colon)) {
if (!property_name) {
syntax_error("Expected a property name");
skip_to_next_property();
continue;
}
consume();
properties.append(create_ast_node<ObjectProperty>(*property_name, parse_expression(2), property_type, false));
} else if (property_name && property_value) {
properties.append(create_ast_node<ObjectProperty>(*property_name, *property_value, property_type, false));
} else {
syntax_error("Expected a property");
skip_to_next_property();
continue;
}
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::CurlyClose);
return create_ast_node<ObjectExpression>(properties);
}
NonnullRefPtr<ArrayExpression> Parser::parse_array_expression()
{
consume(TokenType::BracketOpen);
Vector<RefPtr<Expression>> elements;
while (match_expression() || match(TokenType::TripleDot) || match(TokenType::Comma)) {
RefPtr<Expression> expression;
if (match(TokenType::TripleDot)) {
consume(TokenType::TripleDot);
expression = create_ast_node<SpreadExpression>(parse_expression(2));
} else if (match_expression()) {
expression = parse_expression(2);
}
elements.append(expression);
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::BracketClose);
return create_ast_node<ArrayExpression>(move(elements));
}
NonnullRefPtr<StringLiteral> Parser::parse_string_literal(Token token)
{
auto status = Token::StringValueStatus::Ok;
auto string = token.string_value(status);
if (status != Token::StringValueStatus::Ok) {
String message;
if (status == Token::StringValueStatus::MalformedHexEscape || status == Token::StringValueStatus::MalformedUnicodeEscape) {
auto type = status == Token::StringValueStatus::MalformedUnicodeEscape ? "unicode" : "hexadecimal";
message = String::formatted("Malformed {} escape sequence", type);
} else if (status == Token::StringValueStatus::UnicodeEscapeOverflow) {
message = "Unicode code_point must not be greater than 0x10ffff in escape sequence";
}
syntax_error(
message,
m_parser_state.m_current_token.line_number(),
m_parser_state.m_current_token.line_column());
}
if (m_parser_state.m_use_strict_directive == UseStrictDirectiveState::Looking) {
if (string == "use strict" && token.type() != TokenType::TemplateLiteralString) {
m_parser_state.m_use_strict_directive = UseStrictDirectiveState::Found;
} else {
m_parser_state.m_use_strict_directive = UseStrictDirectiveState::None;
}
}
return create_ast_node<StringLiteral>(string);
}
NonnullRefPtr<TemplateLiteral> Parser::parse_template_literal(bool is_tagged)
{
consume(TokenType::TemplateLiteralStart);
NonnullRefPtrVector<Expression> expressions;
NonnullRefPtrVector<Expression> raw_strings;
auto append_empty_string = [&expressions, &raw_strings, is_tagged]() {
auto string_literal = create_ast_node<StringLiteral>("");
expressions.append(string_literal);
if (is_tagged)
raw_strings.append(string_literal);
};
if (!match(TokenType::TemplateLiteralString))
append_empty_string();
while (!done() && !match(TokenType::TemplateLiteralEnd) && !match(TokenType::UnterminatedTemplateLiteral)) {
if (match(TokenType::TemplateLiteralString)) {
auto token = consume();
expressions.append(parse_string_literal(token));
if (is_tagged)
raw_strings.append(create_ast_node<StringLiteral>(token.value()));
} else if (match(TokenType::TemplateLiteralExprStart)) {
consume(TokenType::TemplateLiteralExprStart);
if (match(TokenType::TemplateLiteralExprEnd)) {
syntax_error("Empty template literal expression block");
return create_ast_node<TemplateLiteral>(expressions);
}
expressions.append(parse_expression(0));
if (match(TokenType::UnterminatedTemplateLiteral)) {
syntax_error("Unterminated template literal");
return create_ast_node<TemplateLiteral>(expressions);
}
consume(TokenType::TemplateLiteralExprEnd);
if (!match(TokenType::TemplateLiteralString))
append_empty_string();
} else {
expected("Template literal string or expression");
break;
}
}
if (match(TokenType::UnterminatedTemplateLiteral)) {
syntax_error("Unterminated template literal");
} else {
consume(TokenType::TemplateLiteralEnd);
}
if (is_tagged)
return create_ast_node<TemplateLiteral>(expressions, raw_strings);
return create_ast_node<TemplateLiteral>(expressions);
}
NonnullRefPtr<Expression> Parser::parse_expression(int min_precedence, Associativity associativity, Vector<TokenType> forbidden)
{
auto expression = parse_primary_expression();
while (match(TokenType::TemplateLiteralStart)) {
auto template_literal = parse_template_literal(true);
expression = create_ast_node<TaggedTemplateLiteral>(move(expression), move(template_literal));
}
while (match_secondary_expression(forbidden)) {
int new_precedence = g_operator_precedence.get(m_parser_state.m_current_token.type());
if (new_precedence < min_precedence)
break;
if (new_precedence == min_precedence && associativity == Associativity::Left)
break;
Associativity new_associativity = operator_associativity(m_parser_state.m_current_token.type());
expression = parse_secondary_expression(move(expression), new_precedence, new_associativity);
while (match(TokenType::TemplateLiteralStart)) {
auto template_literal = parse_template_literal(true);
expression = create_ast_node<TaggedTemplateLiteral>(move(expression), move(template_literal));
}
}
if (match(TokenType::Comma) && min_precedence <= 1) {
NonnullRefPtrVector<Expression> expressions;
expressions.append(expression);
while (match(TokenType::Comma)) {
consume();
expressions.append(parse_expression(2));
}
expression = create_ast_node<SequenceExpression>(move(expressions));
}
return expression;
}
NonnullRefPtr<Expression> Parser::parse_secondary_expression(NonnullRefPtr<Expression> lhs, int min_precedence, Associativity associativity)
{
switch (m_parser_state.m_current_token.type()) {
case TokenType::Plus:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::Addition, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PlusEquals:
return parse_assignment_expression(AssignmentOp::AdditionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Minus:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::Subtraction, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::MinusEquals:
return parse_assignment_expression(AssignmentOp::SubtractionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Asterisk:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::Multiplication, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::AsteriskEquals:
return parse_assignment_expression(AssignmentOp::MultiplicationAssignment, move(lhs), min_precedence, associativity);
case TokenType::Slash:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::Division, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::SlashEquals:
return parse_assignment_expression(AssignmentOp::DivisionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Percent:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::Modulo, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PercentEquals:
return parse_assignment_expression(AssignmentOp::ModuloAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoubleAsterisk:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::Exponentiation, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleAsteriskEquals:
return parse_assignment_expression(AssignmentOp::ExponentiationAssignment, move(lhs), min_precedence, associativity);
case TokenType::GreaterThan:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::GreaterThan, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::GreaterThanEquals:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::GreaterThanEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::LessThan:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::LessThan, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::LessThanEquals:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::LessThanEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::EqualsEqualsEquals:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::TypedEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ExclamationMarkEqualsEquals:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::TypedInequals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::EqualsEquals:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::AbstractEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ExclamationMarkEquals:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::AbstractInequals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::In:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::In, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::Instanceof:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::InstanceOf, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::Ampersand:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::BitwiseAnd, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::AmpersandEquals:
return parse_assignment_expression(AssignmentOp::BitwiseAndAssignment, move(lhs), min_precedence, associativity);
case TokenType::Pipe:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::BitwiseOr, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PipeEquals:
return parse_assignment_expression(AssignmentOp::BitwiseOrAssignment, move(lhs), min_precedence, associativity);
case TokenType::Caret:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::BitwiseXor, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::CaretEquals:
return parse_assignment_expression(AssignmentOp::BitwiseXorAssignment, move(lhs), min_precedence, associativity);
case TokenType::ShiftLeft:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::LeftShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ShiftLeftEquals:
return parse_assignment_expression(AssignmentOp::LeftShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::ShiftRight:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::RightShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ShiftRightEquals:
return parse_assignment_expression(AssignmentOp::RightShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::UnsignedShiftRight:
consume();
return create_ast_node<BinaryExpression>(BinaryOp::UnsignedRightShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::UnsignedShiftRightEquals:
return parse_assignment_expression(AssignmentOp::UnsignedRightShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::ParenOpen:
return parse_call_expression(move(lhs));
case TokenType::Equals:
return parse_assignment_expression(AssignmentOp::Assignment, move(lhs), min_precedence, associativity);
case TokenType::Period:
consume();
if (!match_identifier_name())
expected("IdentifierName");
return create_ast_node<MemberExpression>(move(lhs), create_ast_node<Identifier>(consume().value()));
case TokenType::BracketOpen: {
consume(TokenType::BracketOpen);
auto expression = create_ast_node<MemberExpression>(move(lhs), parse_expression(0), true);
consume(TokenType::BracketClose);
return expression;
}
case TokenType::PlusPlus:
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for foo()++
if (!lhs->is_identifier() && !lhs->is_member_expression())
syntax_error(String::formatted("Left-hand side of postfix increment operator must be identifier or member expression, got {}", lhs->class_name()));
consume();
return create_ast_node<UpdateExpression>(UpdateOp::Increment, move(lhs));
case TokenType::MinusMinus:
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for foo()--
if (!lhs->is_identifier() && !lhs->is_member_expression())
syntax_error(String::formatted("Left-hand side of postfix increment operator must be identifier or member expression, got {}", lhs->class_name()));
consume();
return create_ast_node<UpdateExpression>(UpdateOp::Decrement, move(lhs));
case TokenType::DoubleAmpersand:
consume();
return create_ast_node<LogicalExpression>(LogicalOp::And, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleAmpersandEquals:
return parse_assignment_expression(AssignmentOp::AndAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoublePipe:
consume();
return create_ast_node<LogicalExpression>(LogicalOp::Or, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoublePipeEquals:
return parse_assignment_expression(AssignmentOp::OrAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoubleQuestionMark:
consume();
return create_ast_node<LogicalExpression>(LogicalOp::NullishCoalescing, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleQuestionMarkEquals:
return parse_assignment_expression(AssignmentOp::NullishAssignment, move(lhs), min_precedence, associativity);
case TokenType::QuestionMark:
return parse_conditional_expression(move(lhs));
default:
expected("secondary expression (missing switch case)");
consume();
return create_ast_node<ErrorExpression>();
}
}
NonnullRefPtr<AssignmentExpression> Parser::parse_assignment_expression(AssignmentOp assignment_op, NonnullRefPtr<Expression> lhs, int min_precedence, Associativity associativity)
{
ASSERT(match(TokenType::Equals)
|| match(TokenType::PlusEquals)
|| match(TokenType::MinusEquals)
|| match(TokenType::AsteriskEquals)
|| match(TokenType::SlashEquals)
|| match(TokenType::PercentEquals)
|| match(TokenType::DoubleAsteriskEquals)
|| match(TokenType::AmpersandEquals)
|| match(TokenType::PipeEquals)
|| match(TokenType::CaretEquals)
|| match(TokenType::ShiftLeftEquals)
|| match(TokenType::ShiftRightEquals)
|| match(TokenType::UnsignedShiftRightEquals)
|| match(TokenType::DoubleAmpersandEquals)
|| match(TokenType::DoublePipeEquals)
|| match(TokenType::DoubleQuestionMarkEquals));
consume();
if (!lhs->is_identifier() && !lhs->is_member_expression() && !lhs->is_call_expression()) {
syntax_error("Invalid left-hand side in assignment");
} else if (m_parser_state.m_strict_mode && lhs->is_identifier()) {
auto name = static_cast<const Identifier&>(*lhs).string();
if (name == "eval" || name == "arguments")
syntax_error(String::formatted("'{}' cannot be assigned to in strict mode code", name));
} else if (m_parser_state.m_strict_mode && lhs->is_call_expression()) {
syntax_error("Cannot assign to function call");
}
return create_ast_node<AssignmentExpression>(assignment_op, move(lhs), parse_expression(min_precedence, associativity));
}
NonnullRefPtr<CallExpression> Parser::parse_call_expression(NonnullRefPtr<Expression> lhs)
{
if (!m_parser_state.m_allow_super_constructor_call && lhs->is_super_expression())
syntax_error("'super' keyword unexpected here");
consume(TokenType::ParenOpen);
Vector<CallExpression::Argument> arguments;
while (match_expression() || match(TokenType::TripleDot)) {
if (match(TokenType::TripleDot)) {
consume();
arguments.append({ parse_expression(2), true });
} else {
arguments.append({ parse_expression(2), false });
}
if (!match(TokenType::Comma))
break;
consume();
}
consume(TokenType::ParenClose);
return create_ast_node<CallExpression>(move(lhs), move(arguments));
}
NonnullRefPtr<NewExpression> Parser::parse_new_expression()
{
consume(TokenType::New);
auto callee = parse_expression(g_operator_precedence.get(TokenType::New), Associativity::Right, { TokenType::ParenOpen });
Vector<CallExpression::Argument> arguments;
if (match(TokenType::ParenOpen)) {
consume(TokenType::ParenOpen);
while (match_expression() || match(TokenType::TripleDot)) {
if (match(TokenType::TripleDot)) {
consume();
arguments.append({ parse_expression(2), true });
} else {
arguments.append({ parse_expression(2), false });
}
if (!match(TokenType::Comma))
break;
consume();
}
consume(TokenType::ParenClose);
}
return create_ast_node<NewExpression>(move(callee), move(arguments));
}
NonnullRefPtr<ReturnStatement> Parser::parse_return_statement()
{
if (!m_parser_state.m_in_function_context)
syntax_error("'return' not allowed outside of a function");
consume(TokenType::Return);
// Automatic semicolon insertion: terminate statement when return is followed by newline
if (m_parser_state.m_current_token.trivia().contains('\n'))
return create_ast_node<ReturnStatement>(nullptr);
if (match_expression()) {
auto expression = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ReturnStatement>(move(expression));
}
consume_or_insert_semicolon();
return create_ast_node<ReturnStatement>(nullptr);
}
NonnullRefPtr<BlockStatement> Parser::parse_block_statement()
{
bool dummy = false;
return parse_block_statement(dummy);
}
NonnullRefPtr<BlockStatement> Parser::parse_block_statement(bool& is_strict)
{
ScopePusher scope(*this, ScopePusher::Let);
auto block = create_ast_node<BlockStatement>();
consume(TokenType::CurlyOpen);
bool first = true;
bool initial_strict_mode_state = m_parser_state.m_strict_mode;
if (initial_strict_mode_state) {
m_parser_state.m_use_strict_directive = UseStrictDirectiveState::None;
is_strict = true;
} else {
m_parser_state.m_use_strict_directive = UseStrictDirectiveState::Looking;
}
while (!done() && !match(TokenType::CurlyClose)) {
if (match(TokenType::Semicolon)) {
consume();
} else if (match_statement()) {
block->append(parse_statement());
if (first && !initial_strict_mode_state) {
if (m_parser_state.m_use_strict_directive == UseStrictDirectiveState::Found) {
is_strict = true;
m_parser_state.m_strict_mode = true;
}
m_parser_state.m_use_strict_directive = UseStrictDirectiveState::None;
}
} else {
expected("statement");
consume();
}
first = false;
}
m_parser_state.m_strict_mode = initial_strict_mode_state;
consume(TokenType::CurlyClose);
block->add_variables(m_parser_state.m_let_scopes.last());
block->add_functions(m_parser_state.m_function_scopes.last());
return block;
}
template<typename FunctionNodeType>
NonnullRefPtr<FunctionNodeType> Parser::parse_function_node(u8 parse_options)
{
ASSERT(!(parse_options & FunctionNodeParseOptions::IsGetterFunction && parse_options & FunctionNodeParseOptions::IsSetterFunction));
TemporaryChange super_property_access_rollback(m_parser_state.m_allow_super_property_lookup, !!(parse_options & FunctionNodeParseOptions::AllowSuperPropertyLookup));
TemporaryChange super_constructor_call_rollback(m_parser_state.m_allow_super_constructor_call, !!(parse_options & FunctionNodeParseOptions::AllowSuperConstructorCall));
ScopePusher scope(*this, ScopePusher::Var | ScopePusher::Function);
String name;
if (parse_options & FunctionNodeParseOptions::CheckForFunctionAndName) {
consume(TokenType::Function);
if (FunctionNodeType::must_have_name() || match(TokenType::Identifier))
name = consume(TokenType::Identifier).value();
}
consume(TokenType::ParenOpen);
i32 function_length = -1;
auto parameters = parse_function_parameters(function_length, parse_options);
consume(TokenType::ParenClose);
if (function_length == -1)
function_length = parameters.size();
TemporaryChange change(m_parser_state.m_in_function_context, true);
auto old_labels_in_scope = move(m_parser_state.m_labels_in_scope);
ScopeGuard guard([&]() {
m_parser_state.m_labels_in_scope = move(old_labels_in_scope);
});
bool is_strict = false;
auto body = parse_block_statement(is_strict);
body->add_variables(m_parser_state.m_var_scopes.last());
body->add_functions(m_parser_state.m_function_scopes.last());
return create_ast_node<FunctionNodeType>(name, move(body), move(parameters), function_length, NonnullRefPtrVector<VariableDeclaration>(), is_strict);
}
Vector<FunctionNode::Parameter> Parser::parse_function_parameters(int& function_length, u8 parse_options)
{
Vector<FunctionNode::Parameter> parameters;
while (match(TokenType::Identifier) || match(TokenType::TripleDot)) {
if (parse_options & FunctionNodeParseOptions::IsGetterFunction)
syntax_error("Getter function must have no arguments");
if (parse_options & FunctionNodeParseOptions::IsSetterFunction && (parameters.size() >= 1 || match(TokenType::TripleDot)))
syntax_error("Setter function must have one argument");
if (match(TokenType::TripleDot)) {
consume();
auto parameter_name = consume(TokenType::Identifier).value();
function_length = parameters.size();
parameters.append({ parameter_name, nullptr, true });
break;
}
auto parameter_name = consume(TokenType::Identifier).value();
RefPtr<Expression> default_value;
if (match(TokenType::Equals)) {
consume(TokenType::Equals);
function_length = parameters.size();
default_value = parse_expression(2);
}
parameters.append({ parameter_name, default_value });
if (match(TokenType::ParenClose))
break;
consume(TokenType::Comma);
}
if (parse_options & FunctionNodeParseOptions::IsSetterFunction && parameters.is_empty())
syntax_error("Setter function must have one argument");
return parameters;
}
NonnullRefPtr<VariableDeclaration> Parser::parse_variable_declaration(bool with_semicolon)
{
DeclarationKind declaration_kind;
switch (m_parser_state.m_current_token.type()) {
case TokenType::Var:
declaration_kind = DeclarationKind::Var;
consume(TokenType::Var);
break;
case TokenType::Let:
declaration_kind = DeclarationKind::Let;
consume(TokenType::Let);
break;
case TokenType::Const:
declaration_kind = DeclarationKind::Const;
consume(TokenType::Const);
break;
default:
ASSERT_NOT_REACHED();
}
NonnullRefPtrVector<VariableDeclarator> declarations;
for (;;) {
auto id = consume(TokenType::Identifier).value();
RefPtr<Expression> init;
if (match(TokenType::Equals)) {
consume();
init = parse_expression(2);
}
declarations.append(create_ast_node<VariableDeclarator>(create_ast_node<Identifier>(move(id)), move(init)));
if (match(TokenType::Comma)) {
consume();
continue;
}
break;
}
if (with_semicolon)
consume_or_insert_semicolon();
auto declaration = create_ast_node<VariableDeclaration>(declaration_kind, move(declarations));
if (declaration_kind == DeclarationKind::Var)
m_parser_state.m_var_scopes.last().append(declaration);
else
m_parser_state.m_let_scopes.last().append(declaration);
return declaration;
}
NonnullRefPtr<ThrowStatement> Parser::parse_throw_statement()
{
consume(TokenType::Throw);
// Automatic semicolon insertion: terminate statement when throw is followed by newline
if (m_parser_state.m_current_token.trivia().contains('\n')) {
syntax_error("No line break is allowed between 'throw' and its expression");
return create_ast_node<ThrowStatement>(create_ast_node<ErrorExpression>());
}
auto expression = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ThrowStatement>(move(expression));
}
NonnullRefPtr<BreakStatement> Parser::parse_break_statement()
{
consume(TokenType::Break);
FlyString target_label;
if (match(TokenType::Semicolon)) {
consume();
} else {
if (match(TokenType::Identifier) && !m_parser_state.m_current_token.trivia().contains('\n')) {
target_label = consume().value();
if (!m_parser_state.m_labels_in_scope.contains(target_label))
syntax_error(String::formatted("Label '{}' not found", target_label));
}
consume_or_insert_semicolon();
}
if (target_label.is_null() && !m_parser_state.m_in_break_context)
syntax_error("Unlabeled 'break' not allowed outside of a loop or switch statement");
return create_ast_node<BreakStatement>(target_label);
}
NonnullRefPtr<ContinueStatement> Parser::parse_continue_statement()
{
if (!m_parser_state.m_in_continue_context)
syntax_error("'continue' not allow outside of a loop");
consume(TokenType::Continue);
FlyString target_label;
if (match(TokenType::Semicolon)) {
consume();
return create_ast_node<ContinueStatement>(target_label);
}
if (match(TokenType::Identifier) && !m_parser_state.m_current_token.trivia().contains('\n')) {
target_label = consume().value();
if (!m_parser_state.m_labels_in_scope.contains(target_label))
syntax_error(String::formatted("Label '{}' not found", target_label));
}
consume_or_insert_semicolon();
return create_ast_node<ContinueStatement>(target_label);
}
NonnullRefPtr<ConditionalExpression> Parser::parse_conditional_expression(NonnullRefPtr<Expression> test)
{
consume(TokenType::QuestionMark);
auto consequent = parse_expression(2);
consume(TokenType::Colon);
auto alternate = parse_expression(2);
return create_ast_node<ConditionalExpression>(move(test), move(consequent), move(alternate));
}
NonnullRefPtr<TryStatement> Parser::parse_try_statement()
{
consume(TokenType::Try);
auto block = parse_block_statement();
RefPtr<CatchClause> handler;
if (match(TokenType::Catch))
handler = parse_catch_clause();
RefPtr<BlockStatement> finalizer;
if (match(TokenType::Finally)) {
consume();
finalizer = parse_block_statement();
}
return create_ast_node<TryStatement>(move(block), move(handler), move(finalizer));
}
NonnullRefPtr<DoWhileStatement> Parser::parse_do_while_statement()
{
consume(TokenType::Do);
auto body = [&]() -> NonnullRefPtr<Statement> {
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
return parse_statement();
}();
consume(TokenType::While);
consume(TokenType::ParenOpen);
auto test = parse_expression(0);
consume(TokenType::ParenClose);
consume_or_insert_semicolon();
return create_ast_node<DoWhileStatement>(move(test), move(body));
}
NonnullRefPtr<WhileStatement> Parser::parse_while_statement()
{
consume(TokenType::While);
consume(TokenType::ParenOpen);
auto test = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
auto body = parse_statement();
return create_ast_node<WhileStatement>(move(test), move(body));
}
NonnullRefPtr<SwitchStatement> Parser::parse_switch_statement()
{
consume(TokenType::Switch);
consume(TokenType::ParenOpen);
auto determinant = parse_expression(0);
consume(TokenType::ParenClose);
consume(TokenType::CurlyOpen);
NonnullRefPtrVector<SwitchCase> cases;
auto has_default = false;
while (match(TokenType::Case) || match(TokenType::Default)) {
if (match(TokenType::Default)) {
if (has_default)
syntax_error("Multiple 'default' clauses in switch statement");
has_default = true;
}
cases.append(parse_switch_case());
}
consume(TokenType::CurlyClose);
return create_ast_node<SwitchStatement>(move(determinant), move(cases));
}
NonnullRefPtr<SwitchCase> Parser::parse_switch_case()
{
RefPtr<Expression> test;
if (consume().type() == TokenType::Case) {
test = parse_expression(0);
}
consume(TokenType::Colon);
NonnullRefPtrVector<Statement> consequent;
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
while (match_statement())
consequent.append(parse_statement());
return create_ast_node<SwitchCase>(move(test), move(consequent));
}
NonnullRefPtr<CatchClause> Parser::parse_catch_clause()
{
consume(TokenType::Catch);
String parameter;
if (match(TokenType::ParenOpen)) {
consume();
parameter = consume(TokenType::Identifier).value();
consume(TokenType::ParenClose);
}
auto body = parse_block_statement();
return create_ast_node<CatchClause>(parameter, move(body));
}
NonnullRefPtr<IfStatement> Parser::parse_if_statement()
{
consume(TokenType::If);
consume(TokenType::ParenOpen);
auto predicate = parse_expression(0);
consume(TokenType::ParenClose);
auto consequent = parse_statement();
RefPtr<Statement> alternate;
if (match(TokenType::Else)) {
consume(TokenType::Else);
alternate = parse_statement();
}
return create_ast_node<IfStatement>(move(predicate), move(consequent), move(alternate));
}
NonnullRefPtr<Statement> Parser::parse_for_statement()
{
auto match_for_in_of = [&]() {
return match(TokenType::In) || (match(TokenType::Identifier) && m_parser_state.m_current_token.value() == "of");
};
consume(TokenType::For);
consume(TokenType::ParenOpen);
bool in_scope = false;
RefPtr<ASTNode> init;
if (!match(TokenType::Semicolon)) {
if (match_expression()) {
init = parse_expression(0, Associativity::Right, { TokenType::In });
if (match_for_in_of())
return parse_for_in_of_statement(*init);
} else if (match_variable_declaration()) {
if (!match(TokenType::Var)) {
m_parser_state.m_let_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
in_scope = true;
}
init = parse_variable_declaration(false);
if (match_for_in_of())
return parse_for_in_of_statement(*init);
} else {
syntax_error("Unexpected token in for loop");
}
}
consume(TokenType::Semicolon);
RefPtr<Expression> test;
if (!match(TokenType::Semicolon))
test = parse_expression(0);
consume(TokenType::Semicolon);
RefPtr<Expression> update;
if (!match(TokenType::ParenClose))
update = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
auto body = parse_statement();
if (in_scope) {
m_parser_state.m_let_scopes.take_last();
}
return create_ast_node<ForStatement>(move(init), move(test), move(update), move(body));
}
NonnullRefPtr<Statement> Parser::parse_for_in_of_statement(NonnullRefPtr<ASTNode> lhs)
{
if (lhs->is_variable_declaration()) {
auto declarations = static_cast<VariableDeclaration*>(lhs.ptr())->declarations();
if (declarations.size() > 1) {
syntax_error("multiple declarations not allowed in for..in/of");
lhs = create_ast_node<ErrorExpression>();
}
if (declarations.first().init() != nullptr) {
syntax_error("variable initializer not allowed in for..in/of");
lhs = create_ast_node<ErrorExpression>();
}
}
auto in_or_of = consume();
auto rhs = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
auto body = parse_statement();
if (in_or_of.type() == TokenType::In)
return create_ast_node<ForInStatement>(move(lhs), move(rhs), move(body));
return create_ast_node<ForOfStatement>(move(lhs), move(rhs), move(body));
}
NonnullRefPtr<DebuggerStatement> Parser::parse_debugger_statement()
{
consume(TokenType::Debugger);
consume_or_insert_semicolon();
return create_ast_node<DebuggerStatement>();
}
bool Parser::match(TokenType type) const
{
return m_parser_state.m_current_token.type() == type;
}
bool Parser::match_variable_declaration() const
{
switch (m_parser_state.m_current_token.type()) {
case TokenType::Var:
case TokenType::Let:
case TokenType::Const:
return true;
default:
return false;
}
}
bool Parser::match_expression() const
{
auto type = m_parser_state.m_current_token.type();
return type == TokenType::BoolLiteral
|| type == TokenType::NumericLiteral
|| type == TokenType::BigIntLiteral
|| type == TokenType::StringLiteral
|| type == TokenType::TemplateLiteralStart
|| type == TokenType::NullLiteral
|| type == TokenType::Identifier
|| type == TokenType::New
|| type == TokenType::CurlyOpen
|| type == TokenType::BracketOpen
|| type == TokenType::ParenOpen
|| type == TokenType::Function
|| type == TokenType::This
|| type == TokenType::Super
|| type == TokenType::RegexLiteral
|| match_unary_prefixed_expression();
}
bool Parser::match_unary_prefixed_expression() const
{
auto type = m_parser_state.m_current_token.type();
return type == TokenType::PlusPlus
|| type == TokenType::MinusMinus
|| type == TokenType::ExclamationMark
|| type == TokenType::Tilde
|| type == TokenType::Plus
|| type == TokenType::Minus
|| type == TokenType::Typeof
|| type == TokenType::Void
|| type == TokenType::Delete;
}
bool Parser::match_secondary_expression(Vector<TokenType> forbidden) const
{
auto type = m_parser_state.m_current_token.type();
if (forbidden.contains_slow(type))
return false;
return type == TokenType::Plus
|| type == TokenType::PlusEquals
|| type == TokenType::Minus
|| type == TokenType::MinusEquals
|| type == TokenType::Asterisk
|| type == TokenType::AsteriskEquals
|| type == TokenType::Slash
|| type == TokenType::SlashEquals
|| type == TokenType::Percent
|| type == TokenType::PercentEquals
|| type == TokenType::DoubleAsterisk
|| type == TokenType::DoubleAsteriskEquals
|| type == TokenType::Equals
|| type == TokenType::EqualsEqualsEquals
|| type == TokenType::ExclamationMarkEqualsEquals
|| type == TokenType::EqualsEquals
|| type == TokenType::ExclamationMarkEquals
|| type == TokenType::GreaterThan
|| type == TokenType::GreaterThanEquals
|| type == TokenType::LessThan
|| type == TokenType::LessThanEquals
|| type == TokenType::ParenOpen
|| type == TokenType::Period
|| type == TokenType::BracketOpen
|| type == TokenType::PlusPlus
|| type == TokenType::MinusMinus
|| type == TokenType::In
|| type == TokenType::Instanceof
|| type == TokenType::QuestionMark
|| type == TokenType::Ampersand
|| type == TokenType::AmpersandEquals
|| type == TokenType::Pipe
|| type == TokenType::PipeEquals
|| type == TokenType::Caret
|| type == TokenType::CaretEquals
|| type == TokenType::ShiftLeft
|| type == TokenType::ShiftLeftEquals
|| type == TokenType::ShiftRight
|| type == TokenType::ShiftRightEquals
|| type == TokenType::UnsignedShiftRight
|| type == TokenType::UnsignedShiftRightEquals
|| type == TokenType::DoubleAmpersand
|| type == TokenType::DoubleAmpersandEquals
|| type == TokenType::DoublePipe
|| type == TokenType::DoublePipeEquals
|| type == TokenType::DoubleQuestionMark
|| type == TokenType::DoubleQuestionMarkEquals;
}
bool Parser::match_statement() const
{
auto type = m_parser_state.m_current_token.type();
return match_expression()
|| type == TokenType::Function
|| type == TokenType::Return
|| type == TokenType::Let
|| type == TokenType::Class
|| type == TokenType::Do
|| type == TokenType::If
|| type == TokenType::Throw
|| type == TokenType::Try
|| type == TokenType::While
|| type == TokenType::For
|| type == TokenType::Const
|| type == TokenType::CurlyOpen
|| type == TokenType::Switch
|| type == TokenType::Break
|| type == TokenType::Continue
|| type == TokenType::Var
|| type == TokenType::Debugger
|| type == TokenType::Semicolon;
}
bool Parser::match_identifier_name() const
{
return m_parser_state.m_current_token.is_identifier_name();
}
bool Parser::match_property_key() const
{
auto type = m_parser_state.m_current_token.type();
return match_identifier_name()
|| type == TokenType::BracketOpen
|| type == TokenType::StringLiteral
|| type == TokenType::NumericLiteral
|| type == TokenType::BigIntLiteral;
}
bool Parser::done() const
{
return match(TokenType::Eof);
}
Token Parser::consume()
{
auto old_token = m_parser_state.m_current_token;
m_parser_state.m_current_token = m_parser_state.m_lexer.next();
return old_token;
}
void Parser::consume_or_insert_semicolon()
{
// Semicolon was found and will be consumed
if (match(TokenType::Semicolon)) {
consume();
return;
}
// Insert semicolon if...
// ...token is preceded by one or more newlines
if (m_parser_state.m_current_token.trivia().contains('\n'))
return;
// ...token is a closing curly brace
if (match(TokenType::CurlyClose))
return;
// ...token is eof
if (match(TokenType::Eof))
return;
// No rule for semicolon insertion applies -> syntax error
expected("Semicolon");
}
Token Parser::consume(TokenType expected_type)
{
if (!match(expected_type)) {
expected(Token::name(expected_type));
}
return consume();
}
Token Parser::consume_and_validate_numeric_literal()
{
auto is_unprefixed_octal_number = [](const StringView& value) {
return value.length() > 1 && value[0] == '0' && isdigit(value[1]);
};
auto literal_start_line = m_parser_state.m_current_token.line_number();
auto literal_start_column = m_parser_state.m_current_token.line_column();
auto token = consume(TokenType::NumericLiteral);
if (m_parser_state.m_strict_mode && is_unprefixed_octal_number(token.value()))
syntax_error("Unprefixed octal number not allowed in strict mode", literal_start_line, literal_start_column);
return token;
}
void Parser::expected(const char* what)
{
syntax_error(String::formatted("Unexpected token {}. Expected {}", m_parser_state.m_current_token.name(), what));
}
void Parser::syntax_error(const String& message, size_t line, size_t column)
{
if (line == 0 || column == 0) {
line = m_parser_state.m_current_token.line_number();
column = m_parser_state.m_current_token.line_column();
}
m_parser_state.m_errors.append({ message, line, column });
}
void Parser::save_state()
{
m_saved_state.append(m_parser_state);
}
void Parser::load_state()
{
ASSERT(!m_saved_state.is_empty());
m_parser_state = m_saved_state.take_last();
}
}